8-3842-33-85-00 - магазин жидких обоев

г. Кемерово, Рынок "Привоз" бокс №1

Аккумуляторы литий кадмиевые: Ni-Cd, Ni-MH и Li-Ion аккумуляторы. В чем разница. Плюсы и минусы — купить на radiosila.ru

Содержание

Ni-Cd (никель-кадмиевые), Ni-MH (никель-металлогидридные) или Li-Ion (литий-ионные) — какие аккумуляторы лучше

В интернет-магазине Midlandrus большой выбор аккумуляторов разных типов. Являясь премьер-диллерами брендов Motorola, Icom, Vertex Standard, Alan, мы реализуем сертифицированный оригинальный товар. Перед покупкой аккумулятора нужно определиться с его типом. Сделать это можно, изучив достоинства и недостатки оборудования разных видов.

Основные типы аккумуляторов

Устройства, которые нужны для работы большинства современных электронных приборов, различаются материалом изготовления. Бывают Ni-Cd (никель-кадмиевые), Ni-MH (никель-металлогидридные) и Li-Ion (литий-ионные) аккумуляторы.

Различия также в емкости, экологичности и наличии/отсутствии эффекта памяти. Последний заключается в том, что при неполной разрядке устройства подзарядка ведет к уменьшению емкости. Новый заряд происходит ровно до того уровня, с которого произвели подзарядку.

Аккумулятор ni-cd появился первым. Его используют с 1899 года. Широкое применение оборудованию, состоящему из никелевого катода и анода из гидроксида кадмия, нашли в авиастроении. Его элементы питания отличаются особой прочностью.

Аккумуляторы ni-mh появились в 1987 году. Ввиду улучшенной емкости устройств, полученной в связи с использованием нового гидридного сплава, они начали вытеснять с рынка никель-кадмиевые аналоги.

Аккумуляторы Li-Ion появились в середине 1980-х годов. Их коммерческое использование началось в 1991 году. Сначала в продажу поступило оборудование данного типа компании Sony. Несмотря на улучшенные характеристики, в некоторых ситуациях люди продолжают использовать nicd и nimh аналоги.

Плюсы аккумуляторов разных видов и их минусы

Сказать, какой аккумулятор лучше nicd или nimh или же современные Li-Ion батареи нельзя. Оборудование всех типов:

  • в зависимости от условий эксплуатации ведет себя по-разному;
  • имеет достоинства и недостатки.

Никель кадмиевый аккумулятор отличается невысокой ценой. Отдача максимального тока нагрузки и быстрота зарядки – достоинства батареи. Высокая емкость сохраняется даже при температурах до -20 градусов Цельсия. Если соблюдать нормы эксплуатации, никель кадмиевый аккумулятор выдержит до 1000 циклов зарядки-разрядки.

Основной недостаток никель-кадмиевой батареи – потеря до 10% заряда в первые 24 ч после отключения от источника питания. При таком уровне саморазряда оборудование даже большой емкости надо часто заряжать. Еще один существенный недостаток – ежемесячное сокращение емкости. В среднем этот показатель составляет 9%. Если аккумулятор долго не использовали, то для восстановления емкости нужно произвести около 5 циклов зарядки-разрядки. Он обладает эффектом памяти. Для предотвращения его появления оборудование нужно заржать после того, как оно полностью разрядилось. Это не всегда удобно, ведь в нужный момент рядом может не оказаться источника питания.

Nimh аккумуляторы экологичны. При их использовании не выделяются опасные для здоровья вещества. Они обладают эффектом памяти. Однако он проявляется меньше, чем у ni-cd предшественников. Устройства хорошо работают при температуре ниже 00С и обладают повышенной в сравнении с nicd аналогом емкостью. Недостатки гидридных устройств:

  • высокая степень саморазрядки;
  • снижение первоначальной емкости после определенного количества циклов зарядки-разрядки;
  • ограниченный срок службы.

Снижение емкости в среднем происходит после 250 рабочих циклов. Этот показатель зависит от емкости и характеристик конкретной модели аккумулятора. Nimh батарея стоит дороже, чем nicd.

В Li-Ion батареях нет эффекта памяти. Также к их достоинствам относится:

  • большая емкость;
  • низкий уровень саморазряда;
  • быстрота зарядки;
  • маленькая масса.

Основной недостаток Li-Ion аккумуляторов – высокая цена. Их время работы значительно снижается при температурах ниже 00С. Соответственно, для уличного оборудования современные Li-Ion батареи не подходят. Даже при большой емкости зимой они будут разряжаться быстрее, чем nicd или nimh аналоги. У Li-Ion аккумуляторного элемента ограниченный срок эксплуатации.

Аккумуляторы используются не только в телефонах, фотоаппаратах, плеерах, но и в оборудовании, которое нужно нечасто (аккумуляторный шуруповерт, к примеру). Чтобы приборы любого типа максимально долго сохранили исходные характеристики, хранить их нужно в сухом и прохладном месте. Нежелательно, чтобы батарея была полностью заряжена или разряжена. Не менее чем раз в 3 месяца устройство нужно подзарядить. Перед использованием после длительного хранения следует полностью разрядить и зарядить аккумулятор. Максимальный срок хранения никель-металл-гидридных и кадмиевых устройств — 5 лет.

В чем отличие акумуляторов для раций и радиостанций?


Итак. Ежедневно мы используем в работе АКБ. И зачастую для неопытного пользователя становится египетскими письменами всё, что сказано о них в приводимых описаниях.

Первый и наиболее очевидный параметр – это ёмкость (измеряется в Ампер/часах) то есть за сколько часов аккумулятор может быть разряжен при номинальном токе 1 ампер полностью (сейчас мы говорим, я напомню, об аккумуляторах для носимых радиостанций, а их отличие от автомобильных или стационарных более чем существенно не только по размерам и назначению, но и по сути характеристик )
С грехом пополам разобравшись с емкостью и формой АКБ наш неподготовленный пользователь натыкается на непонятную абревиатуру
Как говорит нам справочник, аккумуляторы на данный момент выпускаются трёх двух основных видов. Это LiOn (Литий-ионные) и NiMH (Никельметаллгидридные, ранее Никель-кадмиевые)
Суть понять можно. Однако какой из них лучше?
На миг углубимся в историю:
Непрерывный поиск автономных источников питания постоянного тока продолжается с тех пор, как А. Вольта предложил общественности в 1859 году химический источник электрической энергии в виде батареи гальванических элементов.

С тех пор было предложено немало идей электролитов, рано или поздно предававшиеся забвению из-за недостаточной эффективности, а иногда и из-за вредного воздействия на окружающую среду (например, ртутные элементы).
Идеальный автономный источник постоянного тока должен иметь небольшие габариты и массу, но в то же время обладать достаточной энергоемкостью для продолжительной работы в заданных условиях, допускать многократное использование (подзарядку и быть безопасным при утилизации), В той или иной мере этим требованиям отвечают аккумуляторы.
При использовании в различной радиоэлектронной аппаратуре на сегодня популярны, никель-металлгидридные (NiMH) и литий-ионные (Li-Ion) аккумуляторы. Последние появились относительно недавно, но уверенно заявляют о своих правах. Их использование с каждым годом растет- Так, например, в 1994 г. таких аккумуляторов различного назначения изготовили и реализовали порядка 12,3 млн. штук, а уже в следующем — производство достигло 32 млн.
Справедливости ради следует отметить, что в то же время NiMH аккумуляторов во всем мире было изготовлено более 300 млн.
Попытаемся ответить на этот вопрос.

NiMH аккумуляторы были разработаны фирмой Sanyo Electric в 1990 г С тех пор они заметно потеснили широко известные NiCd аккумуляторы. Главное их преимущество оказалось в более высокой плотности энергии на единицу объема, выражаемую в размерности ватт час на литр (Вт.ч/л).

Типовое значение плотности энергии лучших образцов NiCd аккумуляторов составляет 120 Вт ч/л, в то время как для металлгидридных оно имеет значение 175 Вт.ч/л, а для литий-ионных-230 Вт ч/л.
Повторим: Никель металл гидрид более емкий нежели никель кадмий.  Но уступает Литий-иону

Другое преимущество металлгидридного аккумулятора заключается в его «удельной» стоимости. В пересчете на единицу электрической емкости источника тока эти аккумуляторы вдвое дешевле по сравнению с литий-ионными, но, правда, во столько же дороже NiCd. Впрочем, последнее не является принципиальным недостаткам металлгидридных аккумуляторов — их никель-кадмиевые конкуренты окончательно проиграли борьбу по другим позициям — массо-габаритным параметрам и высокой токсичности кадмия при утилизации.

Повторим: Никель металл гидрид дешевле и меньше по габаритам.

Сравним теперь  электрические характеристики различных аккумуляторов. Номинальное напряжение никель-кадмиевых и металлгидридных аккумуляторов одинаково и составляет примерно 1,25 В. Оно практически постоянно в течение всего цикла разрядки, снижаясь резко только в конце этого цикла. У литий-ионного аккумулятора номинальное напряжение составляет 3,6 В. В процессе цикла разрядки оно линейно уменьшается. Ниже определенного напряжения литий-ионный аккумулятор разряжать нежелательноВнутреннее сопротивление NiCd и NiMH элементов очень низкое (менее 0,1 Ом для элементов типоразмера АА), поэтому они позволяют получить значительный разрядный ток. У Li-Ion элементов внутреннее сопротивление на порядок больше.


Итак: Никель металл гидрид запоминает зарядку., а Литий –ион устает со временем.

Саморазряд запасенной энергии у никель-кадмиевого и металлгидридного аккумуляторов относительно высокий — в течение месяца хранения он достигает около 25%. Здесь литий-ионный аккумулятор, можно сказать, вне конкуренции. Этот параметр у него не превышает 1 % за тот же период.
По надежности металлгидридные аккумуляторы близки к никель-кадмиевым, но склонны к отказам при высоких разрядных токах.
Металлгидридные аккумуляторы имеют еще одно преимущество перед литий-ионными. При прохождении 300 циклов зарядки-разрядки (с соблюдением правил эксплуатации) у металлгидридных совсем не происходило потери паспортного значения энергоемкости, в то время как у литий-ионных она снижается на 20 %. Более того, это наблюдается и при длительном хранении аккумуляторов без работы на реальную нагрузку. Отмечались также случаи разрушения Li-Ion аккумуляторов, если напряжение на них снижалось ниже определенного значения.

Вот почему некоторые изготовители даже устанавливают на свои аккумуляторы индикаторы разрядки чтобы была возможность визуально оценить его текущее состояние.
Наиболее вероятными причинами отказов NiCd элементов являются внутренние короткие замыкания, вызываемые ростом кристаллов, называемых дендритами. Хотя они и могут быть разрушены «форсированным» высоким зарядным током или зарядкой током специальной формы (часть периода имеющего отрицательное значение), дендриты повторно вырастают, если элемент используется не регулярно.
По заявлениям разработчиков, дендриты у металлгидридных аккумуляторов не наблюдались.
Общеизвестная проблема для NiCd аккумуляторов — это «эффект памяти», который проявляется в частичной (временной) потере энергоемкости аккумулятора, если он будет поставлен на зарядку до полного разряда. Он как бы «помнит» точку начала очередного цикла подзарядки и при разрядке активно отдаст только полученную за время последней подзарядки энергоемкость.

«Эффект памяти» присущ также и NiMH аккумуляторам. Из этого следует сделать вывод, что необходимо устройство, которое бы контролировало глубину разрядки. За нижнюю границу принимают уровень 1,05..,1,1 В на элемент, при этом «эффектом памяти» можно пренебречь. Такие устройства повсеместно применяются в мобильных и переносных телефонах, поэтому даже если в них и проявляется этот эффект, то он минимизирован — энергоемкость никогда на снижается более чем на 10 %. Если «эффект памяти» в какой-то период эксплуатации все же проявился. то его устраняют несколькими циклами тренировки (зарядка-разрядка). После чего аккумуляторы вполне пригодны для дальнейшей работы в составе любых потребителей.
Существует два способа подзарядки аккумуляторов: быстрый и продолжительный. Продолжительный способ, принимаемый всеми изготовителями аккумуляторов как основной, выполняется небольшим по величине током, безопасным для элементов в случае нарушения временного режима (хотя последнее и не рекомендуется). Большое преимущество этого способа в том, что не требуется никаких устройств индикации окончания подзарядки поскольку, как было сказано выше, небольшой ток не может вывести из строя элемент или батарею независимо от того, как долго происходит подзарядка. Недостаток — длительность процесса зарядки.
Это не всегда удобно, вот почему подобные аккумуляторы сейчас используются только в дешевых изделиях — игрушках фонарях и др, А вот для аккумуляторов типоразмера С (используемых преимуществвенно в мобильных системах) номинальным зарядным током принято значение, численно равное его энергоемкости.
Обычный способ определения момента окончания подзарядки — использование индикаторов напряжения или температуры. Менее наглядный способ, а следовательно, и менее продуктивный, — применение таймера, отключающего заряжаемый аккумулятор по истечении заданного периода времени.

 

Подведём итоги:
Плюсы Ni-Cd Никель-кадмиевых аккумуляторов

  • Низкая цена Ni-Cd Никель-кадмиевых аккумуляторов
  • Возможность отдавать наибольший ток нагрузки
  • Возможность быстрого заряда аккумуляторной батареи
  • Сохранение высокой ёмкости аккумулятора до -20°C
  • Большое количество циклов заряда-разряда. При правильной эксплуатации подобные аккумуляторы отлично работают и допускают до 1000 циклов заряда-разряда и более

Минусы Ni-Cd Никель-кадмиевых аккумуляторов

  • Относительно высокий уровень саморазряда – Ni-Cd Никель-кадмиевый аккумулятор теряет порядка 8-10% своей ёмкости в первые сутки после полного заряда.
  • Во время хранения Ni-Cd Никель-кадмиевый аккумулятор теряет порядка 8-10% заряда каждый месяц
  • После длительного хранения ёмкость Ni-Cd Никель-кадмиевого аккумулятора восстанавливается после 5 циклов разряда-заряда.
  • Для продления срока службы Ni-Cd Никель-кадмиевого аккумулятора рекомендуется каждый раз полностью его разряжать для предотвращения проявления «эффекта памяти»

Плюсы Ni-MH Никель-металлогидридных аккумуляторов

  • Нетоксичные аккумуляторы
  • Меньший «эффект памяти»
  • Хорошая работоспособность при низкой температуре
  • Большая ёмкость по сравнению с Ni-Cd Никель-кадмиевыми аккумуляторами

Минусы Ni-MH Никель-металлогидридных аккумуляторов

  • Более дорогой тип аккумуляторов
  • Величина саморазряда примерно в 1. 5 раза выше по сравнению с Ni-Cd Никель-кадмиевыми аккумуляторами
  • После 200-300 циклов разряда-заряда рабочая ёмкость Ni-MH Никель-металлогидридных аккумуляторов несколько снижается
  • Батареи Ni-MH Никель-металлогидридных аккумуляторов имеют ограниченный срок службы

Плюсы Li-Ion Литий-ионных аккумуляторов

  • Отсутствует «эффект памяти» и поэтому появляется возможность заряжать и подзаряжать аккумулятор по мере необходимости
  • Высокая ёмкость Li-Ion Литий-ионных аккумуляторов
  • Небольшая масса Li-Ion Литий-ионных аккумуляторов
  • Рекордно-низкий уровень саморазряда – не более 5% в месяц
  • Возможность быстрого заряда  Li-Ion Литий-ионных аккумуляторов

Минусы Li-Ion Литий-ионных аккумуляторов

  • Высокая стоимость Li-Ion Литий-ионных аккумуляторов
  • Сокращается время работы при температуре ниже нуля градусов Цельсия 
  • Ограниченный срок службы постоянна тренировка.

 

Аккумулятор — Что такое Аккумулятор?

Аккумулятор — это многоразовый источник тока, который предназначен для накопления и хранения энергии.
Его работа основана на обратимых окислительно-восстановительных реакциях, что дает возможность использовать батарею многократно.
Для создания аккумуляторной батареи, несколько аккумуляторов соединяют в одну цепь.

Для бытовых приборов и инструментов используется несколько типов аккумуляторных батарей, которые отличаются по используемым для их изготовления материалам.

Никель-кадмиевые (NiCd)

Эти аккумуляторы способны выдерживать большое количество разрядов и зарядов, устойчивы к низким температурам, также у них большой допустимый ток разряда.
Одними из основных достоинств никель-кадмиевых аккумуляторов являются низкая цена и большой срок службы.
Недостатки указанного вида в том, что он быстро саморазряжается и имеет низкую плотность энергии.
Основным недостатком такого оборудования является «эффект памяти», что приводит к снижению полезной емкости при неполном разряде батареи.
Для восстановления номинальной мощности, надо полностью разрядить, а потом снова зарядить это устройство.
Чтобы увеличить срок службы такого оборудования, необходимо полностью его разряжать и только потом ставить на зарядку.
Для заряда надо использовать только то устройство, которое шло в комплекте, либо таким, которое соответствует требованиям производителя батареи.

Никель-металлогидридные (NiMh)

Такие батареи появились позже, и они являются более перспективными.
Сейчас они массово используются для разной бытовой техники, но для телефонов и ноутбуков применяются еще более прогрессивные виды.

Литий-ионные (LiIon)

Такие аккумуляторы чаще всего используется для питания ноутбуков, фотоаппаратов и другой техники, но в современных телефонах они уже используются редко, т. к. вытесняются более прогрессивным типом батарей.
Их основной недостаток в высокой чувствительности к перезаряду, поэтому в устройствах, где используются такие батареи, обязательно устанавливают контроллер, который ограничивает заряд.

Литий-полимерные (LiPol)

Самые современные устройства.
Основным их отличием является то, что электролит гелеобразный, поэтому такие аккумуляторы могут быть очень тонкими.
Они чаще всего применяются в мобильных телефонах, плеерах и другой технике, имеющей небольшие размеры.
Т. к. такие батареи также чувствительны к перезаряду, использовать их в устройствах с неисправным контроллером заряда нельзя.
Если нарушается герметичность. также нельзя эксплуатировать такую батарею.

Независимо от типа, любой аккумулятор работает благодаря наличию разности напряжения между пластинами из металла, погруженными в электролит.

Химические процессы, происходящие в батарее, являются обратимыми, поэтому после ее разряжения, есть возможность при помощи заряда восстановить работоспособность.
Во время заряда ток пропускают в направлении, противоположном тому, которое будет при разряде аккумуляторной батареи.

Основной характеристикой аккумулятора является емкость, т. е. величина заряда, которую полностью заряженная батарея может отдать при разряде до наименьшего допустимого значения.
Для ее измерения обычно используют Ач.

Типы аккумуляторов |

Свинцовые аккумуляторы (Pb).Реагентами в свинцовых аккумуляторах служат диоксид свинца (PbO2) и свинец (Pb), электролитом — раствор серной кислоты. Они также называются свинцово-кислотными аккумуляторами. Их разделяют на четыре основные группы; стартерные, стационарные, тяговые и портативные (герметизированные). Наиболее распространенные из свинцовых аккумуляторов — стартерные аккумуляторы, предназначены для запуска двигателей внутреннего сгорания и энергообеспечения устройств машин. В последние годы в основном используются аккумуляторы, не требующие ухода. К недостаткам относят невысокие удельную энергию и наработку, плохую сохранность заряда, выделение водорода.

Стационарные аккумуляторы используются в энергетике, на телефонных станциях, в телекоммуникационных системах, в качестве аварийного источника тока и т.д. Обычно они работают в режиме непрерывного подзаряда. Относятся к недорогим аккумуляторам.

Тяговые аккумуляторы предназначены для электроснабжения электрокаров, подъемников, шахтных электровозов, электромобилей и других машин. Действуют в режимах глубокого разряда, имеют большой ресурс и низкую стоимость.

Портативные (герметизированные) свинцовые аккумуляторы используются для питания приборов, инструмента, аварийного освещения. К их достоинствам относятся более низкая стоимость по сравнению со стоимостью других портативных аккумулторов, широкий интервал рабочих температур. Недостатками кислотных аккумуляторов являются невозможность хранения в разряженном состоянии, трудность изготовления аккумуляторов малых размеров.

Никель-кадмиевые аккумуляторы (Ni-Cd).Реагентами в никель-кадмиевых аккумуляторах служат гидроксид никеля и кадмий, электролитом — раствор КОН, поэтому они именуются щелочными аккумуляторами. Существуют три основных вида никель-кадмиевых аккумуляторов: негерметичные с ламельными (ламельные аккумуляторы) и спеченными электродами (безламельные аккумуляторы) и герметичные. Наиболее дешевые ламельные никель-кадмиевые аккумуляторы характеризуются плоской разрядной кривой, высокими ресурсом и прочностью, но не низкой удельной энергией. Удельная энергия, скорость разряда Ni-Cd аккумуляторов со спеченными электродами выше, они работоспособны при низких температурах, но дороже, характеризуются эффектом памяти и способностью к тепловому разгону.

Применяются никель-кадмиевые аккумуляторы для питания шахтных электровозов, подъемников, стационарного оборудования, средств связи и электронных приборов, для запуска дизелей и авиационных двигателей и т.п.

Герметичные Ni-Cd аккумуляторы характеризуются горизонтальной разрядной кривой, высокими скоростями разряда и способностью действовать при низких температурах, но они дороже герметизированных свинцовых аккумуляторов и характеризуются эффектом памяти. Применялись для питания портативной аппаратуры (сотовых телефонов, магнитофонов, компьютеров и т.д.), бытовых приборов, игрушек и т.д. Недостатком никель-кадмиевых аккумуляторов является применение токсичного кадмия.

Никель-железные аккумуляторы.Вместо кадмия в этих аккумуляторах используется железо. Из-за выделения водорода с самого начала заряда аккумуляторы производят только в негерметичном варианте. Они дешевле никель-кадмиевых аккумуляторов, не содержат токсичный кадмий, имеют длинный срок службы и высокую механическую прочность. Однако они характеризуются высоким саморазрядом, низкой отдачей по энергии, практически неработоспособны при температуре ниже -10 °С. Выпускаются в призматическом виде и используются в основном как тяговые источники тока в шахтных электровозах, электрокарах и промышленных подъемниках.

Никель-металлогидридные аккумуляторы (Ni-MH).Активным материалом отрицательного электрода является интерметаллид, обратимо сорбирующий водород, т. е. фактически отрицательный электрод является водородным электродом, у которого восстановленная форма водорода находится в абсорбированном состоянии. Разрядная кривая Ni-MH аккумулятора аналогична кривой Ni-Cd аккумулятора. Удельная емкость и энергия никель-металлогидридных аккумуляторов в 1,5-2 раза выше удельной энергии никель-кадмиевых аккумуляторов, кроме того, они не содержат токсичный кадмий. Изготавливаются в герметичном исполнении цилиндрической, призматической и дисковой форм. Применяются для питания портативных приборов и аппаратуры.

Никель-цинковые аккумуляторы.Это щелочные аккумуляторы, у которых отрицательный электрод — цинковый. Удельная энергия никель-цинковых аккумуляторов примерно в 2 раза выше удельной энергии Ni-Cd аккумуляторов. Они характеризуются горизонтальной разрядной кривой, высокой удельной мощностью и относительно невысокой начальной ценой, однако ресурс их мал, поэтому массового применения не имеют. Применяются для питания портативной аппаратуры

Серебряно-цинковые и серебряно-кадмиевые аккумуляторы. Активными материалами служат оксид серебра на положительном и цинк или кадмий — на отрицательном электродах соответственно, электролитом является раствор щелочи. Характеризуются высокими удельными энергиями и мощностью, низким саморазрядом, но весьма дороги. Серебряно-цинковые аккумуляторы имеют незначительный ресурс. Выпускаются в призматической и дисковой формах, применяются для питания портативных приборов и аппаратов, в военной технике.

Никель-водородные аккумуляторы.Отрицательным электродом служит пористый газодиффузионный электрод с платиновым катализатором, на котором обратимо реагирует газообразный водород. Характеризуются высокой удельной энергией и очень высоким ресурсом, но значительным саморазрядом и очень дороги. Применялись в космической технике.

Литий-ионные аккумуляторы (Li-ion).В качестве отрицательного электрода применяется углеродистый материал, в который обратимо внедряются ионы лития. Активным материалом положительного электрода обычно служит оксид кобальта, в который также обратимо внедряются ионы лития. Электролитом является раствор соли лития в неводном апротонном растворителе. Аккумуляторы имеют высокую удельную энергию, высокий ресурс и способны работать при низких температурах. Благодаря высокой удельной энергии их производство в последние годы резко увеличилось. Выпускаются в цилиндрической и призматической формах. Они применяются в сотовых телефонах, ноутбуках и других портативных устройствах.

Литий-полимерные аккумуляторы (Li-pol).Анодом служит углеродистый материал, в который обратимо внедряются ионы лития. Активными материалами положительных электродов являются оксиды ванадия, кобальта или марганца. Электролитом является или раствор соли лития в неводных апротонных растворителях, заключенный в микропористую полимерную матрицу, или полимер (полиакрилонитрил, полиметилметакрилат, поливинилхлорид либо другие), пластифицированный раствором соли лития в апротонном растворителе (гель-полимерный электролит). По сравнению с литий-ионными аккумуляторами литий-полимерные аккумуляторы имеют более высокие удельную энергию и ресурс и лучшую безопасность. Применяются для питания портативных электронных устройств.

Перезаряжаемые марганцево-цинковые источники тока.Первичные цилиндрические марганцево-цинковые источники тока с щелочным электролитом определенного состава, изготовленные по специальной технологии, могут электрически перезаряжаться. Они характеризуются высокой удельной энергией, малым саморазрядом и невысокой стоимостью, выпускаются в герметичном исполнении, однако имеют очень малый ресурс (до 25-50 циклов), небольшую скорость разряда и наклонную разрядную кривую. Возможность перезаряда такого марганцево-цинкового источники тока отдельно оговаривается производителем.

Характеристики аккумуляторов

Среднее разрядное напряжение аккумуляторов находится в широком диапазоне от 1,25В у никель-кадмиевых аккумуляторов до 3,5В у литиевых аккумуляторов. С повышением скорости разряда емкость аккумуляторов уменьшается (см. рисунок), причем в минимальной степени у Ni-Cd и Ni-MH аккумуляторов. Емкость также снижается при понижении температуры. Наибольшое снижение емкости при низких температурах наблюдается у никель-железных аккумуляторов и минимальное снижение — у никель-кадмиевых со спеченными электродами и у свинцовых аккумуляторов. Высокую удельную мощность можно получить от никель-кадмиевых аккумуляторов, свинцовых (стартерных и герметизированных), никель-цинковых и серебряно-цинковых аккумуляторов. Невысокую удельную мощность имеют никель-железные аккумуляторы. Удельная массовая энергия минимальна у свинцовых аккумуляторов и максимальна у литиевых аккумуляторов. Наибольшую наработку имеют никель-водородные аккумуляторы, низким ресурсом характеризуются серебряно-цинковые и никель-цинковые аккумуляторы. Следует отметить, что по мере циклирования уменьшаются емкость, напряжение и соответственно удельная энергия аккумуляторов, причем скорости понижения удельной энергии у разных аккумуляторов существенно различаются. В наименьшей степени снижаются емкость и энергия при циклировании Ni-Cd аккумуляторов. Наработка зависит от многих причин и прежде всего от глубины разряда. Наиболее высокая скорость саморазряда отмечается у никель-водородных и никель-железных аккумуляторов, наименьшая — у серебряно-кадмиевых и серебряно-цинковых аккумуляторов. К наиболее дешевым принадлежат свинцовые аккумуляторы, к наиболее дорогим — никель-водородные, серебряно-кадмиевые и серебряно-цинковые аккумуляторы.


Влияние тока разряда на емкость отдаваемую аккумулятором:
1-никель-кадмиевые аккумуляторы со спеченным электродом и никель-металлгидридные аккумуляторы, 2-серебрянно-цинковые аккумуляторы, 3- никель-кадмиевые аккумуляторы с ламельным электродом, 4-никель-цинковые аккумуляторы, 5-литий-инные аккумуляторы, 6-свинцовые аккумуляторы, 7-никель-железные аккумуляторы.

Источник: материал сайта http://www.powerinfo.ru/

Ni cd или li ion для шуруповерта

Li-Ion или Ni-Cd Аккумуляторы

Литий-ионные и никель-кадмиевые аккумуляторы – два популярных класса автономных источников питания. Каждый из них имеет определённые границы наилучшего применения, и неудачи пользователей часто связаны с незнанием особенностей работы таких батарей. При многих сходных характеристиках батареи Li-Ion и NiCd отличаются своим химическим составом, воздействием на окружающую среду, применением и стоимостью.

Что общего у Li-Ion и Ni-Cd аккумуляторов

Формы и некоторые параметры данных классов батареек определяются ГОСТ 26692-85. В частности. данный стандарт устанавливает для обоих видов:

  1. Габаритные размеры.
  2. Порядок приёмки и испытания.
  3. Условия безопасного применения.
  4. Комплектность поставки.
  5. Маркировку, упаковку и транспортировку потребителям.
  6. Перечень указаний по безопасной эксплуатации.
  7. Гарантии производителя.

Важно! Поскольку области применения батарей указанного типа постоянно расширяются, то в последнее время введён и применяется ГОСТ Р МЭК 61426-1-2014, в котором оговариваются общие требования к аккумуляторам, используемым в качестве возобновляемых энергоисточников (например, в фотоэнергетике).

Общими являются также диапазоны ёмкостей батареек: и те, и другие могут производиться с показателями от 1,2 до 3,6 А·ч и более. Общим свойством можно назвать и эффективность циклов зарядки/разрядки, которая, в зависимости от конкретного производителя, находится в пределах 70…90%.

Различия между Li-Ion и Ni-Cd батареями

Сопоставим следующие характеристики: сущность электрохимических процессов, воздействие на окружающую среду, стоимость, особенности эксплуатации и производительность, а также практическое применение.

Никель-кадмиевая батарея использует кадмий в качестве анода (отрицательный вывод), оксигидроксид никеля в качестве катода (положительный вывод) и водный гидроксид калия в качестве электролита.

Литий-ионная АКБ использует графит в качестве анода, оксид лития для катода и литиевую соль в качестве электролита. Ионы лития движутся от отрицательного электрода к положительному во время разряда, и в обратном направлении — при зарядке.

Батареи Ni-Cd содержат от 6% (для промышленных источников) до 18% (для потребительских батарей) кадмия, который является токсичным тяжёлым металлом, и поэтому требует особой осторожности при удалении и утилизации использованной батарейки. Такие отходы считаются экологически опасными. В то же время все компоненты литий-ионных аккумуляторов являются безопасными для окружающей среды, поскольку литий не является токсичным металлом.

С точки зрения стоимости литий-ионная батарея стоит примерно на 40 % дороже никель-кадмиевой. Это объясняется существенными производственными затратами на обеспечение дополнительной схемы защиты, которая контролирует параметры напряжения, тока и мощности.

Чем литий-ионный лучше никель-кадмиевого

Самый большой недостаток никель-кадмиевых батарей – их приверженность так называемому «эффекту памяти», когда они разряжаются и перезаряжаются до одного и того же состояния ёмкости несколько раз. Батарея «запоминает» точку в цикле зарядки, в которой началась перезарядка, и во время последующего использования напряжение в этой точке внезапно падает, как если бы батарея разрядилась.

Вместе с тем ёмкость аккумулятора фактически снижается лишь незначительно. Некоторые виды электронных устройств специально разработаны для того, чтобы выдерживать такие пониженные напряжения достаточно долго — чтобы напряжение возвращалось в нормальное состояние. Однако некоторые приборы и гаджеты в этот период отключаются, поэтому батарея кажется «мёртвой» раньше обычного.

Подобный эффект, называемый депрессией напряжения, является результатом многократной перезарядки. В этом случае батарея полностью заряжается, но быстро разряжается после короткого периода работы.

Другой проблемой является эффект «обратной зарядки», который возникает из-за ошибки пользователя, либо когда батарея из нескольких элементов полностью разряжена. Реверсивная зарядка приводит к сокращению срока службы АКБ. Побочным продуктом обратной зарядки является газообразный водород, который является опасным.

Интересный факт: обратная зарядка случается при нерегулярном применении никель-кадмиевых источников питания. Тогда в батареях образуются и распространяются дендриты — тонкие проводящие кристаллы, которые могут проникать через разделительную мембрану между электродами. Это приводит к внутреннему короткому замыканию и преждевременному отказу батареи.

Литиево-ионные аккумуляторы, напротив, не требуют высокого уровня обслуживания. Они могут быть перезаряжены до того, как полностью разрядятся (без формирования «эффекта памяти») и работают в более широком температурном диапазоне. По сравнению с Ni-Cd саморазряд в литий-ионном растворе составляет менее половины от общей ёмкости, что повышает срок службы такого аккумулятора. Поэтому литиево-ионную батарею можно хранить в течение нескольких месяцев без потери заряда.

Чем Никель Кадмиевый АКБ лучше Литий Ионного

Большие Ni-Cd АКБ используются для воздушных стартеров, электромобилей и в качестве источников резервной мощности.

Важно! Заметным недостатком литий-ионной батареи считается её хрупкость. Поэтому для обеспечения безопасной работы такой аккумулятор нуждается в специальной цепи защиты.

Схема защиты рассчитана на ограничение значений пикового напряжение в период зарядки аккумулятора или батарейки. Она исключает возможность пониженного напряжения, которое может наблюдаться при разрядке источника питания. Для предотвращения экстремальных температур и повышения безопасности применения температура внутри корпуса также контролируется. Всё это увеличивает стоимость и повышает габариты литий-ионной АКБ.

Учитывая такие качества, как высокая плотность энергии, отсутствие эффекта памяти и медленная потеря заряда, литий-ионные батареи находят преимущественное применение для военных целей, в аэрокосмической технике, а также как источники питания современных электромобилей (там, где значение имеют малый вес и размеры).

Что лучше: Li-Ion или Ni-Cd

Однозначно на это вопрос ответить невозможно, да и не нужно. Каждый тип аккумуляторов имеет свои рациональные области применения. Ni-Cd батарея дешевле и характеризуется значительным числом циклов зарядки/разрядки (которые, однако, не должны производиться часто!). Li-Ion батарея отличается компактностью размеров, увеличенным временем автономной работы, отсутствием «эффекта памяти», может работать в более широком температурном диапазоне.

Остались вопросы? Задайте их в комментариях!


Что лучше ni mh, ni cd или li ion аккумуляторы

Современный потребитель не представляет своего существования без различных электрических приборов и аппаратов. Для обеспечения их работоспособности необходимо применять элементы питания. Правильный выбор и эксплуатация поможет значительно продлить их срок службы, а также уберечь от аварийных ситуаций.

Особенности строения ni cd аккумуляторов достоинства и недостатки

Аккумулятор никель кадмиевый по своей конструкции представляет собой разнополюсные электроды, разделенные межу собой специальным сепаратором. В качестве электролита применяется щелочной концентрат, зачастую это гидроксид калия, данное вещество не является пожаро и взрывоопасным.

Для увеличения активной площади взаимодействия при гальванической реакции электроды изготавливаются в виде фольги, расхода электролита в процессе эксплуатации не происходит благодаря герметичности корпуса источника питания.

К достоинствам такого элемента питания следует отнести:

  • доступная стоимость относительно аналогичных,
  • возможность отдавать повышенный ток под нагрузкой,
  • допускается ускоренный метода заряда,
  • способность сохранять емкость заряда до -20°С,
  • увеличенное количество циклов заряда-разряда в процессе эксплуатации.

Главными недостатками считаются:

  • повышенный уровень самостоятельного разряда в течение короткого времени,
  • при долгом хранении для восстановления требуют более 5 циклов заряда-разряда,
  • увеличить срок службы возможно только при полном разряде батареи.

Особенности строения ni mh аккумуляторов достоинства и преимущества

Металлгидридные источники питания появились в ходе совершенствования первоначальных вариантов никель кадмиевых. Основное отличие ni mh от ni cd аккумуляторов заключается в использовании в качестве материалов для электродов комбинированных сплавов никеля с редкоземельными металлами.

Разноименные полюса в таких источниках питания свернуты в рулон и разделены между собой специальным сепаратором, изготовленным из крепкого материала. В конструкции корпуса предусмотрено применение средств защиты в виде датчиков давления и предохранительного клапана.

Интересно знать! Никель металлгидридный аккумулятор отличается от своего предшественника пониженным содержанием токсичных веществ.

Положительными свойствами считают:

  • сохраняют рабочие характеристики при пониженных температурах,
  • обладают повышенной емкостью, в чем отличаются аккумуляторы от никель кадмиевых,
  • отсутствие токсичных веществ,
  • уменьшенный эффект памяти.

К отрицательным показателям относят:

  • повышенные свойства самостоятельного разряда,
  • увеличенная стоимость,
  • снижение емкости после 300 циклов заряда-разряда,
  • относительно короткий срок службы.

Li ion аккумуляторы, строение, плюсы и минусы

Литиевые аккумуляторы представляют собой элементы питания анод которых произведен из металла лития. В них повышены некоторые основные характеристики необходимые для современных электронных устройств. Главное отличие литий ионных аккумуляторов от никель кадмиевых считается повышенное рабочее напряжение и увеличенная энергетическая емкость.

Ni mh и li ion в своей конструкции имеют специальные защитные приспособления такие, как датчики давления и предохранительные средства при увеличении внутренней температуры.

К плюсам производители относят:

  • практически полное отсутствие «эффекта памяти»,
  • повышенная внутренняя емкость элемента,
  • малая масса относительно аналогов,
  • минимальный самостоятельный разряд.

К минусам потребители причисляют:

  • повышенную цену, в результате применения редких металлов в конструкции,
  • нетерпимость к минусовым температурам,
  • имеют ограничения по сроку службы.

Никель кадмиевые и литий ионные аккумуляторы схожи между собой в возможности использования при необходимости быстрого заряда повышенными токами.

Характеристика «Эффект памяти»

Одной из важных характеристик при выяснении различия между элементами питания является «эффект памяти», суть данного явления заключается в сохранении батареей начального значения заряда, при котором начали его восполнение.

Ni cd или ni mh аккумуляторы имеют в своих свойствах такой эффект. Данная характеристика считается отрицательной, потому что при неполном разряде батареи она сохранит в дальнейшем это значение и не будет разряжаться полностью. Внутренняя емкость и срок службы при этом значительно понижаются.

У литиевых элементов питания такого эффекта не отмечается, в таком сравнении данная батарея лучше. Повышается удобство, нет необходимости ждать полного понижения заряда, восполнить его можно в любое удобное время без опасения нанесения вреда емкости и сроку службы.

Важно! Перед зарядом ni cd следует полностью разряжать, ni mh рекомендуется разряжать не полностью.

Различие батарей по основным техническим характеристикам

Аккумуляторные батареи, как и любой электрический элемент имеют основные технические показатели, согласно которым можно оценить достоинства того или иного вида. Рассмотрим некоторые характеристики

Напряжение работы и разряда

Значение рабочего напряжения для элементов питания является постоянным показателем и может лишь незначительно меняться в процессе снижения заряда в ходе работы. Nicd или nimh батареи имеют одинаковый номинальный вольтаж равный 1,2 В, а также показание при разряде 0,9 В. У литиевых такие показания значительно отличаются в результате применения активных элементов в своем составе. Рабочее напряжение составляет 3,6 В, при разряде 3 В.

Диапазон рабочих температур

Рабочая температура является важным показателем в ходе эксплуатации элементов питания. Не всегда есть возможность применения электрического оборудования в помещении и в летний период. Для никелевых батарей температурный диапазон довольно широкий, связано это с тем, что в качестве электролита применяется щелочной состав пониженным значением замерзания от -50°С. У литиевого аккумулятора этот показатель несколько выше от -20°С.

Значение высокого предела температур у всех видов практически одинаков и составляет +50°С, +60°С.

Средства защиты и контроля

Ni mh и li ion аккумуляторные батареи имеют в своей конструкции специальные защитные составляющие. В процессе производства устанавливаются датчики температуры и давления, а также предохранительные клапаны.

Внимание! В процессе заряда необходимо правильно устанавливать параметры, а также контролировать их.

Условия хранения для различных элементов питания:

  • никель кадмиевые аккумуляторы могут храниться при полном разряде, и сразу восстанавливают свои характеристики при восполнении заряда,
  • никель металлгидридные батареи полностью не рекомендуют разряжать,
  • литиевые имеют ограниченный срок службы, в связи с этим производителями рекомендуется активное применение, если же требуется хранение элемент питания разряжают наполовину.

Различие в применении

При выборе того или иного аккумулятора для питания различной техники необходимо понимать, какие необходимые свойства будут важны в ходе эксплуатации. Для переносных гаджетов и небольшой радиоэлектроники пригодится подойдет литий ионные или никель металлгидридные батареи, данные потребители не требуют повышенных токов разряда. При питании электроинструмента требуется более высокие показания тока, а также возможность использования аппарата при пониженных температурах без опасения быстрого разряда в таком случае подходят никелевые.

Все рассмотренные элементы питания обладают рядом положительных и отрицательных характеристик. Правильное понимание основных необходимых свойств поможет снизить затраты, а также продлить работоспособность используемого аппарата или прибора.


Чем литий-ионные (Li-ion) аккумуляторы лучше Ni-Cd или Ni-MH

Ранее мы говорили, что литий-ионные аккумуляторы пришли на смену перезаряжаемым батарейкам Ni-MH и Ni-Cd, как достойная альтернатива, характеризующаяся высокими рабочими качествами. При этом мало кто знает, что до выхода литиевый источников тока было более 20 лет неудачных экспериментов, которые никак не давали положительного результата.

Ситуация кардинально переменилась после того, как учеными был сделан уклон в сторону ионов лития, вместо работы с металлическим литием. И сегодня аккумуляторы на базе литий ионов уже окружают нас повсеместно. Такие элементы питания сейчас используют:

— в фототехнике,
— в мобильных телефонах,
— в компьютерах и ноутбуках,
— в цифровой аппаратуре,
— в смартфонах, планшетах, электронных книгах и даже карманных фонариках.

Принципиальные преимущества Li-ion аккумуляторов

Если разобраться, то литий-ионные аккумуляторные батарейки имеют схожие типоразмеры, аналогичные никель-кадмиевым и никель-металлогидридным вторичным элементам. Форма батареек также может быть 2-х типов:

— цилиндр (в том числе таблетка, кнопка, пуговка),
— параллелепипед (внешне: прямоугольник, блок).

При схожих размерах аккумуляторы литий-ионной схемы накапливают большее количество энергии и дают более высокое напряжение, чем ранее популярные Ni-Cd или Ni-MH источники тока. Например, один литиевый элемент питания (одна батарейка) уже способна заменить 2 никелевые модели по напряжению и срокам службы.

Чем еще литий-ионные аккумуляторы лучше своих предшественников? Да практически всем:

— повышенной плотностью (удельной емкостью) энергии на единицу площади,
— высокой плотностью разрядных токов,
— незначительным и малозаметным саморазрядом,
— длительным сроком службы (10 лет),
— простотой в уходе и эксплуатации,
— отсутствием потребности в «тренировке» после покупки,
— постоянной готовностью к эффективной работе,
— возможностью регулярной незначительной дозарядки,
— широким рабочим температурным диапазоном,
— значительным количеством рабочих циклов (свыше 1000 разряд/зарядов),
— способностью сохранять накопленную энергию,
— отсутствием «эффекта памяти»,
— малым старением без регулярного использования,
— прочими полезными качествами.

Так, заряженная литий-ионная аккумуляторная батарейка может терять за год не более 3% накопленной емкости, что изначально предопределяет длительные сроки ее хранения в условиях, указанных производителем изделия. А спустя 2 года хранения без использования аккумулятор литий ионный может потерять всего 20% былой энергии, и готов в любое время приступить к работе.

Принципиальные недостатки Li-ion аккумуляторов

Этот абзац не будет большим, т.к. заметных недостатков не слишком много. Это:

— сравнительно высокая стоимость,
— «боязнь» перезарядки,
— «боязнь» полного разряда в ноль,
— ограниченный спектр рабочих температур, который выше Ni-MH или Ni-Cd, но все еще не безграничен,
— взрывоопасность при нарушении герметичности корпуса,
— невозможность обеспечить высокие разрядные токи, в чем могут нуждаться мощные портативные электроприборы вроде электробритвы или фотовспышки.

Перспективы развития Li-ion аккумуляторов

1. Уже сегодня аккумуляторы литий ионные считаются экспертами наиболее перспективным классом автономных перезаряжаемых элементов питания.

2. Идет поиск материала, способного заменить дорогостоящий оксид кобальта. При успехе этого поиска цена аккумуляторов может снизиться.

3. Повышение удельной энергоемкости – главное направление поиска ученых, и уже сейчас появляются новые успешные варианты, например, с переходом на литий-полимерную (Li-pol) основу аккумулятора.

В целом, аккумуляторные батарейки Li-ion идеальными, конечно, не назовешь, но высокая плотность накопленной энергии компенсирует здесь все имеющиеся недостатки. И именно поэтому литий-ионные элементы питания получили сегодня столь широкое распространение во всех видах портативной и автономной электротехнике, где компактность и эргономичность имеет большое значение.


В чем разница между Ni-Cad, Ni-MH и Li-Ion аккумуляторами

Ответы на вопросы, изложенные в данной статье, справедливы для аккумуляторов любых устройств, основанных на Ni-Cad, Ni-MH, Li-Ion, Li-poly технологиях.

Главное отличие между ними в том, что Ni-MH (из этих двух это наиболее новая технология) имеет большую емкость, чем Ni-Cad. Иными словами, емкость Ni-MH аккумуляторных элементов примерно в два раза больше, чем у Ni-Cad собратьев, что дает нам увеличение времени работы без увеличения размеров и веса батареи. Ni-MH элементы имеют еще одно важное преимущество – они значительно менее подвержены так называемому «эффекту памяти», чем Ni-Cad элементы. Также Ni-MH элементы экологически более безопасны, благодаря отсутствию в них тяжелых металлов.

Сегодня литиево-ионные аккумуляторы стали стандартом в потребительской электронике. Li-Ion элементы имеют вдвое большую емкость, чем Ni-MH элементы, и весят при этом на треть меньше. Они абсолютно не подвержены «эффекту памяти». Недостатками данного типа являются более высокая стоимость и узкий диапазон рабочей температуры.

Дальнейшим развитием Li-Ion технологии является Li-Poly (Литий-полимер). В Li-Poly аккумуляторных элементах отсутствует жидкий электролит, что исключает возможность его утечки. Литиево-полимерные аккумуляторные элементы легче, надежнее и более безопасны, чем их предшественники, более эффективно работают при отрицательных температурах.

Большинство современных аккумуляторов для ноутбуков и любых других электронных устройств состоят из аккумуляторных элементов, накапливающих электроэнергию, и управляющей электроники.

“Усиленный аккумулятор” или “аккумулятор повышенной емкости” отличается от стандартного аккумулятора увеличенной емкостью и, как правило, увеличенными габаритами и весом, т.к. внутри такого аккумулятора больше аккумуляторных элементов. Если аккумулятор размещается под крышкой устройства, то часто в комплекте с аккумулятором идет новая крышка, т.к. под “родную” крышку усиленный аккумулятор не влезает.

Когда мы заряжаем аккумулятор, это называется «цикл заряда». Когда мы используем аккумулятор, это называется «цикл разряда».

Эффект памяти вызван химическими процессами, происходящими внутри аккумуляторных элементов. Этому эффекту подвержены Ni-Cad и, в меньшей степени, Ni-MH элементы. Li-Ion / Li-Poly элементы не имеют «эффекта памяти» вообще.

Только в том случае, если производитель вашего устройства предусмотрел такую возможность. Иначе такой аккумулятор ваше устройство “переварить” не сможет. Ni-Cad, Ni-MH и Li-Ion элементы сильно отличаются друг от друга по способу заряда и другим параметрам.

Новый аккумулятор, как правило, не заряжен, либо заряжен частично. Необходимо полностью зарядить аккумулятор. Рекомендуется первый раз оставить его на зарядке на ночь.

Довольно часто при первой зарядке аккумулятор показывает полный заряд уже через 10-20 минут, но фактически не заряжается. Это нормально, просто выньте аккумулятор и вставьте его на место, после чего продолжите зарядку. Возможно, это придется проделать несколько раз. В процессе заряда аккумулятор может нагреваться, это нормально.

Как продлить жизнь батареи и использовать ее максимально эффективно?

  • Разработайте новую батарею – несколько раз полностью зарядите и полностью разрядите её, после этого батарея достигнет своей максимальной емкости. Этот процесс называется тренировкой батареи.
  • Держите контакты батареи чистыми, ни в коем случае не замыкайте их.
  • Разряжайте и заряжайте батарею до конца
  • Батарея должна работать – не оставляйте батарею без работы на длительное время (несколько месяцев и более). Рекомендуется использовать батарею хотя бы один раз в месяц.
  • Используйте функции энергосбережения вашего ноутбука, чтобы увеличить время работы батареи.
  • Не вскрывайте, не бросайте, не нагревайте и не мочите батарею.

Это не очень хорошая идея, аккумулятор должен работать. Если вы все-таки не используете аккумулятор, то храните его в темном, сухом, прохладном месте, вдалеке от источников тепла и металлических объектов. Раз в несколько месяцев полностью зарядите аккумулятор. Li-Ion аккумуляторы нельзя хранить полностью разряженными! В процессе хранения аккумулятор постепенно теряет заряд, не забудьте полностью зарядить его перед использованием.

В нормальных условиях, как правило, 500-800 циклов заряда / разряда (до 3 лет). Необходимо помнить о том, что аккумулятор начинает «стареть» с момента своего изготовления, не зависимо от того, используется он или нет.

С вашим устройством все будет в порядке. Более того, сторонние производители часто делают более емкие аккумуляторы, чем оригинальный производитель. Особенно это характерно для старых моделей, к которым интерес «родителя» давно потерян.

Современные аккумуляторные батареи сложный и довольно «капризный» продукт, даже самые именитые бренды регулярно оказываются в центре скандалов с некачественными батареями.

В BIOS’e многих ноутбуков есть пункт «калибровка батареи». Фактически это полный цикл заряда / разряда аккумулятора для ноутбука. Это нужно для того, чтобы сбросить накапливающиеся в процессе эксплуатации ошибки контроллера аккумулятора. Рекомендуется производить калибровку после длительного хранения аккумулятора, потери его емкости, ошибках предсказания времени автономной работы аккумулятора.

Если в вашем устройстве нет функции “калибровка аккумулятора”, просто разрядите и зарядите аккумулятор несколько раз до конца.

Симптомы: Через минуту после старта Windows выскакивает сообщение об ошибке “Аккумулятор неправильно вставлен . “, аккумулятор не заряжается, ноутбук с неоригинальной батареей не загружается.

Необходимо отключить программу Sony ISB Utility (ISBMgr.exe). Либо найдите и удалите этот файл, либо удалите его из автозагрузки (Пуск > выполнить > msconfig > автозагрузка). Главное назначение этой программы заставить вас покупать дорогостоящие аккумуляторы Sony.

“GB/T 18287 – 2000” это маркировка стандарта Li-ion батарей, которым обозначаются практически все Li-ion батареи для телефонов, КПК, смартфонов и других подобных устройств. Данная маркировка не является номером (part number) или названием конкретной батареи.


NiCd, NiMH и Li-Ion аккумуляторы, сравнение

У никель-металлгидридных аккумуляторов – преемников широко распространенных никель-кадмиевых, обнаружились конкуренты – литий-ионные аккумуляторы. Чтобы читатель мог судить, насколько это масштабная конкуренция, мы предлагаем познакомиться с основными характеристиками новых аккумуляторов, с их преимуществами и недостатками.

Непрерывный поиск автономных источников питания постоянного тока продолжается с тех пор, как А. Вольта продемонстрировал в начале прошлого века химический источник электрической энергии в виде батареи гальванических элементов. С тех пор много воды (а точнее электролита) утекло, много различных видов гальванических элементов и аккумуляторов появлялись и предавались забвению из-за своих ограниченных возможностей, а иногда и из-за вредного воздействия на окружающую среду (например, ртутные элементы).

Идеальный автономный источник тока должен иметь небольшие габариты и массу, но в то же время обладать достаточной энергоемкостью для продолжительной работы в заданных условиях, допускать многократное использование (подзарядку и быть безопасным при утилизации), В той или иной мере этим требованиям отвечают аккумуляторы.

Так чем же хороши новые виды аккумуляторов и почему никель-кадмиевые уступают свои позиции? Попытаемся ответить на этот вопрос.

NiMH аккумуляторы были разработаны фирмой Sanyo Electric в 1990 г С тех пор они заметно потеснили широко известные NiCd аккумуляторы. Главное их преимущество оказалось в более высокой плотности энергии на единицу объема, выражаемую в размерности ватт час на литр (Вт.ч/л).

Типовое значение плотности энергии лучших образцов NiCd аккумуляторов составляет 120 Вт ч/л, в то время как для металлгидридных оно имеет значение 175 Вт.ч/л, а для литий-ионных-230 Вт ч/л. Обеспечивая повышение конкурентоспособности и завоевывая лидерство на рынке автономных источников питания, конструкторы NiMH аккумуляторов добились заметных успехов. В результате уже в 1996 г. была достигнута плотность энергии этих аккумуляторов порядка 300 Вт.ч/л

Другое преимущество металлгидридного аккумулятора заключается в его “удельной” стоимости. В пересчете на единицу электрической емкости источника тока эти аккумуляторы вдвое дешевле по сравнению с литий-ионными, но, правда, во столько же дороже NiCd. Впрочем, последнее не является принципиальным недостаткам металлгидридных аккумуляторов – их никель-кадмиевые конкуренты окончательно проиграли борьбу по другим позициям – массо-габаритным параметрам и высокой токсичности кадмия при утилизации.

Интересно сравнить и электрические характеристики различных аккумуляторов. Номинальное напряжение никель-кадмиевых и металлгидридных аккумуляторов одинаково и составляет примерно 1,25 В. Оно практически постоянно в течение всего цикла разрядки, снижаясь резко только в конце этого цикла. У литий-ионного аккумулятора номинальное напряжение составляет 3,6 В. В процессе цикла разрядки оно линейно уменьшается. Ниже определенного напряжения литий-ионный аккумулятор разряжать нежелательно. У приборов с анодами на основе графитовых композитов (фирмы Sanyo, Matsushita и др.) в конце цикла разрядки отмечаются кратковременные колебания напряжения. По этой причине последние следует подключать непременно через стабилизирующие устройства.
Внутреннее сопротивление NiCd и NiMH элементов очень низкое (менее 0,1 Ом для элементов типоразмера АА), поэтому они позволяют получить значительный разрядный ток. У Li-Ion элементов внутреннее сопротивление на порядок больше. Это ограничивает применение Li-Ion аккумуляторов в устройствах с большим потребляемым током, например, в радиостанциях.

Саморазряд запасенной энергии у никель-кадмиевого и металлгидридного аккумуляторов относительно высокий – в течение месяца хранения он достигает около 25%. Здесь литий-ионный аккумулятор, можно сказать, вне конкуренции. Этот параметр у него не превышает 1 % за тот же период.

В режимах быстрой зарядки (об этом речь пойдет ниже) NiCd аккумулятор позволяет, при необходимости, выполнить эту процедуру за 15 мин, NiMH элемент – по крайней мере, за час, a Li-Ion – за два часа.

По надежности металлгидридные аккумуляторы близки к никель-кадмиевым, но склонны к отказам при высоких разрядных токах.

Металлгидридные аккумуляторы имеют еще одно преимущество перед литий-ионными. При прохождении 300 циклов зарядки-разрядки (с соблюдением правил эксплуатации) у металлгидридных совсем не происходило потери паспортного значения энергоемкости, в то время как у литий-ионных она снижается на 20 %. Более того, это наблюдается и при длительном хранении аккумуляторов без работы на реальную нагрузку. Отмечались также случаи разрушения Li-Ion аккумуляторов, если напряжение на них снижалось ниже определенного значения. Вот почему некоторые изготовители даже устанавливают на свои аккумуляторы индикаторы разрядки чтобы была возможность визуально оценить его текущее состояние.

Наиболее вероятными причинами отказов NiCd элементов являются внутренние короткие замыкания, вызываемые ростом кристаллов, называемых дендритами. Хотя они и могут быть разрушены “форсированным” высоким зарядным током или зарядкой током специальной формы (часть периода имеющего отрицательное значение), дендриты повторно вырастают, если элемент используется не регулярно.

По заявлениям разработчиков, дендриты у металлгидридных аккумуляторов не наблюдались.

Общеизвестная проблема для NiCd аккумуляторов – это “эффект памяти”, который проявляется в частичной (временной) потере энергоемкости аккумулятора, если он будет поставлен на зарядку до полного разряда. Он как бы “помнит” точку начала очередного цикла подзарядки и при разрядке активно отдаст только полученную за время последней подзарядки энергоемкость.

“Эффект памяти” присущ также и NiMH аккумуляторам. Из этого следует сделать вывод, что необходимо устройство, которое бы контролировало глубину разрядки. За нижнюю границу принимают уровень 1,05. 1,1 В на элемент, при этом “эффектом памяти” можно пренебречь. Такие устройства повсеместно применяются в мобильных и переносных телефонах, поэтому даже если в них и проявляется этот эффект, то он минимизирован – энергоемкость никогда на снижается более чем на 10 %. Если “эффект памяти” в какой-то период эксплуатации все же проявился. то его устраняют несколькими циклами тренировк(зарядка-разрядка). После чего аккумуляторы вполне пригодны для дальнейшей работы в составе любых потребителей.

Для минимизации отказов NiMH аккумуляторов необходимо предусмотреть устройства их защиты и при зарядке, например. от коротких замыканий в цепях зарядного устройства. Когда фирма Sanyo начала массовый выпуск NiMH аккумуляторов в 1990 г,, она рекомендовала использовать три типа устройства защиты:
прерыватели цепей, тепловые плавкие вставки (предохранители) и термисторы с обязательным их встраиванием в корпус аккумуляторной батареи.

Сегодня в основном используют только последний из названных методов – встроенный в корпус аккумулятора и имеющий с ним тепловой контакт термистор с положительным значением, температурного коэффициента сопротивления (ТКС), который ограничивает зарядный и разрядный токи при повышении температуры внутри.

Массовый выпуск NiMH аккумуляторов осуществляется не более шести лет, уже имеется довольно широкая гамма их типономиналов, учитывающая уже сложившийся рынок бытовой радиоэлектронной аппаратуры. Она включает в себя наиболее массовый типоразмеры, такие как ААА (прототип российского элемента 286), АА(316), С и D, а также батареи аккумуляторов с напряжениями 10 и 12 В. Типовой ряд продукции фирмы Sanyo включает элемент размера ААА с электрической емкостью 500 мА-ч, АА-750мА-ч и другие (до 3.5 А-ч.). О достижениях фирмы можно судить по аккумуляторному элементу HR-4/3A, имеющему номинальную емкость 3,5 Ач при диаметре 17 и высоте 67 мм. Весит он при этом всего 56 г.

По сравнению с NiCd аккумуляторами металлгидридные обладают еще одним несравненным преимуществом – они экологически чисты. Если в NiCd аккумуляторе одна пятая часть массы изделия составляет небезопасный для природы и человека кадмии, та NiMH аккумулятор не содержит ни кадмия, ни ртути, ни их соединений, и для окружающей среды “отслуживший” экземпляр не представляет никакой опасности.

И никель-кадмиевые, и метаплгидридные аккумуляторы заряжают от источника постоянного тока. Значение зарядного тока определяется типом используемых аккумуляторов, для которых установлены вполне конкретные значения величины тока и продолжительности зарядки. Допуски на стабильность напряжения не оговариваются. В отличие от них, литиевым аккумуляторам требуется источник с напряжением порядка 4,2 В (на элемент) с довольно жестким допуском – не более ±0,05 В.

Существует два способа подзарядки аккумуляторов: быстрый и продолжительный. Продолжительный способ, принимаемый всеми изготовителями аккумуляторов как основной, выполняется небольшим по величине током, безопасным для элементов в случае нарушения временного режима (хотя последнее и не рекомендуется). Большое преимущество этого способа в том, что не требуется никаких устройств индикации окончания подзарядки поскольку, как было сказано выше, небольшой ток не может вывести из строя элемент или батарею независимо от того, как долго происходит подзарядка. Недостаток – длительность процесса зарядки.

Для большинства никель-кадмиевых аккумуляторов установлен номинальный зарядный ток, равный 0,1 энергоемкости (Е) данного типа при продолжительности подзарядки 12 ч (для отечественных аккумуляторных элементов принята продолжительность цикла зарядки 15 ч. – (Прим ред.). Это не всегда удобно, вот почему подобные аккумуляторы сейчас используются только в дешевых изделиях – игрушках фонарях и др, А вот для аккумуляторов типоразмера С (используемых преимуществвенно в мобильных системах) номинальным зарядным током принято значение, численно равное его энергоемкости.

Металлгидридные элементы, по сравнению с никель-кадмиевыми аккумуляторами, предъявляют более жесткие требования к зарядному току. Максимальная безопасная его величина определяется изготовителем (записывается в паспорте на изделие) и обычно составляет 0,025—0,1 Е. Превышение этого тока может повредить элемент, если в зарядном устройстве не предусмотрены меры по его защите и контролю окончания зарядки.

Быстрые режимы зарядки для никель-кадмиевых и металлгидридных аккумуляторов определены длительностью в один час с увеличением зарядного тока до значения 1,2 Е. Существуют специальные разработки никель-кадмиевых аккумуляторов. для которых предусматривают “сверхбыстрый” режим зарядки – 15 мин. зарядный ток при этом увеличивают до значения 5 Е. Быстрый режим зарядки для литиевых аккумуляторов определен длительностью в два часа. При быстрых режимах зарядки существует опасность “перезарядить” аккумулятор (например, не уследили за током подзарядки или временем), а это для него тоже нежелательно, так как приводит к выходам из строя или потере энергоемкости. Вот почему такой способ подзарядки должен жестко контролироваться.

Обычный способ определения момента окончания подзарядки – использование индикаторов напряжения или температуры. Менее наглядный способ, а следовательно, и менее продуктивный, – применение таймера, отключающего заряжаемый аккумулятор по истечении заданного периода времени.

Как читатель мог убедиться, металлгидридмые аккумуляторы все же имеют некоторое преимущество перед литий-ионными (не говоря уж о никель-кадмиевых), но хватит ли этого для того, чтобы неоспоримо отдать им преимущество? Ведь когда речь заходит об использовании источников питания и малогабаритной радиоэлектронной аппаратуре, стоимостные категории часто отходят на второй план. Однако, если разработчики достигнут заявленных значений параметров металлгидридных аккумуляторов, возможно это и будет решающим фактором их превосходства. Ведь пока недостатки литийионных преодолеть не удалось.


Никель-кадмиевые аккумуляторы или литий-ионные — что выбрать

Здравствуйте! В этой статье я расскажу, что лучше выбрать — никель-кадмиевые аккумуляторы или литий-ионные.

При выборе аккумуляторного инструмента всегда приходиться думать, с каким типом батарей его купить — литий-ионными (Li-ion) или никель-кадмиевыми (Ni-Cd). Многие уже наслышаны о плюсах литий-иона, тем более, что и в сотовом телефоне у каждого стоит именно он. Но не все так просто. В этой статье я расскажу, в чем здесь разница.

Различие между литий-ионным и никель-кадмиевым аккумуляторами

Здесь я буду говорить о разнице в эксплуатационных свойствах Li-ion и Ni-Cd.

Итак, главным отличием литий-ионных батарей от никель-кадмиевых является то, что первые не имеют эффекта памяти, а вторые, соответственно, имеют.

Что такое эффект памяти? Это очень неприятное свойство никель-кадмия, заключается которое в следующем. Если вы поставите его на зарядку и, не дав полностью зарядиться, снимите, то он запоминает ту набранную емкость, до которой успел зарядиться, и при следующих зарядках, сколько его не держи, зарядится только до той отметки, которую запомнил при первой неполной зарядке. Отсюда и название — эффект памяти.

Также верно и обратное — если поставить такой аккумулятор заряжаться, не дав ему полностью разрядиться, то он запоминает отметку, до которой ему дали разрядится и в дальнейшем, достигая ее, разряжаться не будет, и соответственно техника работать от него не сможет.

И вот всех этих «радостей» лишен литий-ионный аккумулятор. Поэтому многие, покупая аккумуляторный инструмент, стремятся приобрести его с таким питающим элементом именно из-за отсутствия у него эффекта памяти.

Вторым преимуществом литий-ионника перед никель-кадмиевым является то, что он практически не теряет своего заряда, если просто лежит без дела. Даже пролежав два года без дела, потеря составит не более 20%. Этим не может похвастаться никель-кадмий, который теряет весь свой заряд за полгода простоя. А если пролежит без дела целый год, то может высадиться в ноль и потом совсем не сможет зарядиться. Поэтому раз в полгода его нужно вставлять в зарядное устройство и полностью зарядить. Ну, если вы, конечно, хотите, чтобы он служил у вас долго.

И вроде бы всё указывает на то, что нужно брать аппараты с литий-ионом. Однако следует сказать, что стоимость их значительно больше. Поэтому многие предпочтут сэкономить, и купить технику с никель-кадмием, посчитав, что можно и поуделять немного больше внимания процессу зарядки, чем платить лишние немалые деньги. Тем более, что срок эксплуатации у обоих типов примерно одинаков (конечно, если правильно эксплуатировать никель-кадмий).

Но самым существенным недостатком литий-ионок является невозможность их длительной эксплуатации при минусовых температурах. Некоторые наверное замечали, как у них на сотовом телефоне, пролежавшем долго на холоде, отметка уровня заряда падала книзу, либо аппарат совсем выключался. Но затем, при переносе телефона в тепло, тот снова показывал полный заряд. Это как раз проявление этого неприятного свойства.

Если в случае с телефоном такая неприятность простительна, так как его итак обычно держат в кармане, где его греет тепло вашего тела, то вот с аккумуляторным инструментом, которым нужно трудиться на улице, когда за бортом холодно, такое свойство просто не позволит выполнить задуманное дело. Даже поставленная на холоде в зарядное устройство литий-ионная батарея не показывает признаков жизни и абсолютно не заряжается.

Стоит, правда, заметить, что у разных моделей нижняя температурная отметка, при которой ток перестает отдаваться, отличается. Есть такие, которые перестают работать при -5, а есть и те, которые выдерживают и -15 градусов.

И вот в этом случае понадобятся никель-кадмиевые батареи, которые и при минус двадцати могут держать свою емкость, пусть и не на 100%. Но поработать с ними получится в любом случае.

Вывод

Таким образом, при всех плюсах литий-иона, всегда нужно помнить, что есть условия, когда без никель-кадмиевых аккумуляторов не обойтись. Поэтому покупайте первый вариант, если вы точно знаете, что не будете трудиться в отрицательных (да и положительных близких к нулю) температурах, либо работа в таких условиях будет кратковременной и рядом есть теплое помещение, так как заморочек с их эксплуатацией действительно меньше. Однако на холоде без никель-кадмиевого аккумулятора не обойтись.

Обновление информации. Статья писалась в 2015 году. На момент 2018 года она уже не особо актуальна. Во-первых, литий-ионные аккумуляторы значительно подешевели с тех пор. Во-вторых, на холоде они себя сейчас тоже чувствуют довольно уверенно. Поэтому все производители инструмента на сегодня стали выпускать аккумуляторную технику только с литий-ионными батареями. В продаже еще можно встретить и технику с батареями на основе никеля и кадмия, однако их все меньше и меньше, так как свою актуальность они потеряли.

На этом заканчиваю! Спасибо за внимание! Читайте и другие статьи на моем сайте и до новых встреч!

Читайте также:

Типы аккумуляторов, их достоинства, недостатки и специфика использования

Литий-ионные аккумуляторы (Li-Ion, Lithium Ion)

Достоинства Li-Ion аккумуляторов:

Высокая ёмкость
Малые габариты
Небольшая масса
Отсутствует эффект «памяти»
Низкая степень саморазряда
Возможность форсированной (быстрой) зарядки
Большое количество циклов заряда/разряда

Недостатки Li-Ion аккумуляторов:

Высокая стоимость
Быстрое старение
Чувствительна к низким температурам

Общая информация:

Отсутствие эффекта «памяти» в литиевых аккумуляторах позволяет заряжать и подзаряжать аккумуляторы по мере необходимости, а так же находиться в зарядном устройстве длительное время. Обычно поставляются заряженным на 40-60%. Степень саморазряда литиевого аккумулятора рекордно мала – 3-5% в месяц. При длительном хранении необходима подзарядка не реже, чем раз в 3 месяца. Время работы литиевых аккумуляторов сокращается при температуре ниже 0°С. Срок службы литиевых аккумуляторов составляет от 4 до 6 лет, по прошествии которых ёмкость аккумулятора снизится и он может стать непригоден, не зависимо от интенсивности использования. Номинальное количество циклов заряда/разряда более 1000, максимальное – более 2000 циклов. Восстановлению данные аккумуляторы не подлежат.

Аккумуляторы на основе литий-ионных ячеек эффективны при интенсивном использовании и частых циклах заряда/разряда. В период срока службы такие аккумуляторы будут оптимальны для техники, которая часто и регулярно используется, в сравнении с батареями на основе никеля.

Литий-полимерные аккумуляторы (Li-Pol, Lithium Polymer)

Достоинства Li-Pol аккумуляторов:

Высокая ёмкость
Малые габариты
Небольшая масса
Отсутствует эффект «памяти»
Низкая степень саморазряда
Большое количество циклов заряда/разряда
Возможность форсированной (быстрой) зарядки
Возможность изготовления любой формы и конфигурации

Недостатки Li-Pol аккумуляторов:

Высокая стоимость
Быстрое старение
Чувствительна к низким температурам

Общая информация:

Литий-полимерные и литий-ионные батареи схожи по своим техническим характеристикам за исключением того, что литий-полимерные аккумуляторы имеют возможность изготовления практически любой формы и конфигурации, что позволяет убрать ограничения в отношении конечной формы, размеров и электрических характеристик. Так же литий-полимерные аккумуляторы имеют более высокие показатели в стандартных тестах на производительность и безопасность (раздавливание, протыкание, вибрация, короткое замыкание, перезаряд, форсированный заряд), но из-за кристаллизации находящегося внутри полимера электрические характеристики сильно ухудшаются при отрицательной температуре.

Аккумуляторы на основе литий-полимерных ячеек эффективны при интенсивном использовании и частых циклах заряда/разряда. Подходят для устройств с нестандартным форм-фактором и специфической конфигурацией.

Литий-железо-фосфатные аккумуляторы (LiFePO4)

Достоинства LiFePO4 аккумуляторов:

Высокая ёмкость
Отсутствует эффект «памяти»
Устойчивы к переразряду
Не теряют емкость при отрицательных температурах
Низкая степень саморазряда
Срок хранения до 15 лет
Большое количество циклов заряда/разряда
Возможность форсированной (быстрой) зарядки
Не горят при повреждении и не токсичны

Недостатки LiFePO4 аккумуляторов:

Высокая стоимость
Тяжелее относительно Li-Ion

Общая информация:

В отличие от большинства литиевых аккумуляторов LiFePO4 отличаются длительным сроком службы, устойчивостью к отрицательным температурам и безопасностью в эксплуатации. Поставляются заряженным на 40-60%. Могут использоваться вне помещений, так как устойчивы к отрицательным температурам до -30°С. Степень саморазряда менее 1,5% в месяц. Длительное хранение не сказывается негативно на работе. Срок службы достигает 5000 циклов перезарядки, а срок хранения до 15 лет.

Аккумуляторы на основе литий-железо-фосфатных ячеек оптимальны для техники, которая используется вне помещений и периодически остается на хранении длительное время. Область применения – накопители для солнечных панелей и ветрогенераторов, электроавтомобили, водный транспорт, складская техника, гольфкары, электровелосипеды и электроскутеры.

Никель-кадмиевые аккумуляторы (Ni-Cd, Nickel Cadmium)

Достоинства Ni-Cd аккумуляторов:

Низкая стоимость
Высокая вероятность восстановления
Работа в широком диапазоне температур
Большое количество циклов заряда/разряда
Возможность форсированной (быстрой) зарядки

Недостатки Ni-Cd аккумуляторов:

Высокая степень саморазряда
Эффект «памяти»
Большие размеры
Токсичность при неправильной утилизации
Срок службы ограничен количеством циклов заряда/разряда

Общая информация:

Никель-кадмиевые аккумуляторы чаще всего поставляются почти полностью разряженными из-за высокой степени саморазряда – 15-20% в месяц. Нахождение в зарядном устройстве длительное время нежелательно, так как сильно ухудшаются характеристики. У никель-кадмиевых аккумуляторов есть эффект “памяти” и что бы избежать проявления этого эффекта требуется регулярно (где-то раз в неделю) полностью разряжать аккумулятор перед зарядкой. Практически нет потери емкости при температуре до -20°C, а рабочий диапазон температур варьируется от -50°C до +70°C. Номинальное количество циклов заряда/разряда более 1000, максимальное – более 2500 циклов. Восстановление данных аккумуляторов возможно с вероятностью 60%.

Специфика использования никель-кадмиевых аккумуляторов обусловлена сроком службы, который зависит от количества циклов заряда/разряда и соблюдения условий зарядки. Наиболее эффективно использование для периодической эксплуатации и в режиме полного разряда.

Никель-металлогидридные аккумуляторы (Ni-MH, Nickel Metal-Hydride)

Достоинства Ni-MH аккумуляторов:

Низкая стоимость
Высокая ёмкость
Низкая токсичность
Слабовыраженный эффект “памяти”
Работа в широком диапазоне температур

Недостатки Ni-MH аккумуляторов:

Высокая степень саморазряда
Медленная зарядка
Малое количество циклов заряда/разряда
Сложное и дорогое устройство зарядных устройств

Общая информация:

Никель-металлогидридные аккумуляторы должны храниться полностью заряженными. Степень саморазряда у них крайне высока и достигает 30% в месяц. Нахождение в зарядном устройстве длительное время нежелательно, так как сильно ухудшаются характеристики. У никель-металлогидридныx аккумуляторов слабо выражен эффект “памяти” и рекомендуется регулярно (примерно каждые два месяца) полностью разряжать аккумулятор перед зарядкой. По сравнению с никель-кадмиевыми аккумуляторами (Ni-Cd) имеют большую энергетическую плотность (емкость), но требовательны к зарядным устройствам и условиям зарядки. Проявляют хорошую работоспособность при низких температурах, но диапазон рабочих температур не высок – от -10°C до +40°C. Номинальное количество циклов заряда/разряда от 500 до 1000 циклов. Восстановление данных аккумуляторов возможно с вероятностью 15%.

Использование никель-металлогидридных аккумуляторов ограничено сроком службы, однако они обладают большой емкостью и наиболее эффективно их использование в устройствах с низким постоянным потреблением.

Сводная таблица никелевых батарей — Battery University

Химия

Никель-кадмиевый

Металлогидрид никель

Никель-железо

Никель-цинк

Никель-водородный

Аббревиатура

NiCd

NiMH

NiFe

NiZn

NiH

Тип

Никелевый катод;
кадмиевый анод

Никелевый катод;
водородопоглощающий анод

Оксидно-гидроксидный катод; железный анод с электролитом гидроксид калия

Аналогичен NiCd; использует щелочной электролит и никелевый электрод

Электроды никелевые, водородные электроды в напорном сосуде

Номинальное напряжение

1.20 В / элемент (1,25)

1,20 В

1,65 В

1,25 В

Заряд

Коническое зарядное устройство. Постоянный ток; плавающее напряжение

Зарядное устройство с конусом, аналогичное NiCd

Зарядное устройство с конусом, аналогичное NiCd

Не определено

Полная зарядка

Наблюдение за падением напряжения; напряжение плато как блокировка

1.9В

Не определено

Капельный заряд

0,1C

0,05C

Не определено

Без подзарядки

Не определено

Удельная энергия

45–80Втч / кг

60–120Втч / кг

50Втч / кг

100Втч / кг

40–75Втч / кг

Тариф

Может быть выше 1С

0.5–1C

Не определено

Обычный заряд

Не определено

Скорость разряда

Может быть выше 1С

Умеренно

Относительно высокая мощность

Не определено

Жизненный цикл
(полная DoD)

1 000

300–500

20 лет в UPS

200–300

Очень долгий срок службы (> 70,000 частичных)

Техническое обслуживание

Полная разрядка каждые 3 месяца (память)

Полная разрядка каждые 6 месяцев

Не определено

Не определено

Бесплатная поддержка; низкий саморазряд

Виды отказа

Память уменьшает емкость, обратимая

Память (меньше, чем у NiCd)

Избыточная зарядка вызывает высыхание

Короткий цикл жизни из-за роста дендритов

Минимальная коррозия

Упаковка

A, AA, C, также дробным размером

A, AA, AAA, C, призматический

Не определено

AA и др.

Сделанный на заказ; каждая ячейка стоит> 1000 долларов США

Окружающая среда

Широкий температурный диапазон.Токсичный

Считается нетоксичным

Низкая производительность в холодную погоду

Хороший температурный диапазон

Работает при
–28 ° C до 54 ° C

История

1899 г., запечатанная версия выпущена в продажу в 1947 г.

Исследования начались в 1967 году, коммерческие — в 1980-х; на основе никель-водород

В 1901 году Томас Эдисон запатентовал и продвигал NiFe вместо свинцово-кислотной; не удалось прижиться за ДВС, EV

В 1901 году Томас Эдисон был удостоен премии U.Патент на батарею NiZn

Проблемы с нестабильностью в 1967 году привели к переходу от NiMH к NiH

.

Приложения

Главный аккумулятор в самолете (затопленный), широкий температурный диапазон

Гибридные автомобили, потребительские, ИБП

Немецкие летающие бомбы Фау-1, ракеты Фау-2; ж / д сигнализация, UPS, горная промышленность

Возобновление интереса к коммерческому рынку с Улучшениями

Исключительно сателлиты; слишком дорого для наземного использования

Комментарии

Надежный, снисходительный, требующий особого ухода.Единственный аккумулятор, который можно сверхбыстро заряжать без особых усилий

Более хрупкий, чем NiCd; имеет большую вместимость; без обслуживания

В 1990 году для экономии Cd был заменен на Fe. Высокий саморазряд и высокие затраты на изготовление

Высокая мощность, хороший температурный диапазон, низкая стоимость, но высокий саморазряд и короткий срок службы

Использует стальной баллон для хранения водорода при 8,270 кПа (1,200 фунт / кв. Дюйм)

Тестирование никелевых батарей — Battery University

Узнайте о методах тестирования и об ограничениях.

Снижение емкости никелевых батарей частично коррелирует с повышением внутреннего сопротивления. NiCd и NiMH имеют общие черты со свинцовыми и литиевыми батареями в том, что внутреннее сопротивление сначала остается низким, а затем быстро увеличивается к концу срока службы. Измерение сопротивления может служить простым методом экспресс-теста для определения конца жизни, но это не дает надежной информации о состоянии здоровья (SoH). (См. BU-208: Циклические характеристики).

QuickTest ™ (от Cadex) идет дальше простого измерения сопротивления и объединяет данные шести переменных.Это емкость, внутреннее сопротивление, саморазряд, прием заряда, возможности разряда и подвижность электролита. Алгоритм изучения тенденций объединяет данные, чтобы обеспечить надежное показание состояния здоровья (SoH) в процентах. Система использует матрицы для конкретных батарей, которые хранятся в тестовом устройстве. На рисунке 1 представлена ​​упрощенная структура алгоритма.

Рис. 1:
Структура QuickTest ™

Несколько переменных подаются на микроконтроллер, «фаззифицируются» и обрабатываются параллельной логикой.Данные усредняются и взвешиваются в соответствии с приложением батареи.

Патент США 6,778,913

Предоставлено Cadex


Поскольку QuickTest ™ учитывает внутреннее сопротивление аккумуляторной батареи, необходимо учитывать сварные швы между элементами, особенно с блоками из 10 и более элементов. Несмотря на кажущуюся незначительность с точки зрения дополнительного сопротивления, механическое соединение ведет себя иначе, чем химическая ячейка, и это вызывает нежелательную ошибку.Ошибка связи не наблюдается при обычном испытании на разряд или при проверке только сопротивления, но она мешает более высокопроизводительным методам быстрого испытания, включающим сигналы возбуждения, которые учитывают многие переменные.

Помимо сопротивления взаимосвязанных ячеек, каждая ячейка в пакете из нескольких ячеек по-разному реагирует на сигналы возбуждения. По мере того как стая стареет, эти характеристики начинают расходиться; QuickTest ™ рассматривает среднее значение всех ячеек вместе взятых. QuickTest ™ эффективно работает только с батареями на основе никеля. В литий-ионных и свинцово-кислотных системах используются различные технологии быстрого тестирования.(См. BU-907: Проверка литиевых батарей.)


Последнее обновление 22.01.2016

*** Пожалуйста, прочтите комментарии ***

Комментарии предназначены для «комментирования», открытого обсуждения среди посетителей сайта. Battery University отслеживает комментарии и понимает важность выражения точек зрения и мнений на общем форуме. Однако при общении необходимо использовать соответствующий язык, избегая спама и дискриминации.

Если у вас есть предложение или вы хотите сообщить об ошибке, воспользуйтесь формой «свяжитесь с нами» или напишите нам по адресу: [email protected] Нам нравится получать от вас известия, но мы не можем ответить на все запросы. Мы рекомендуем размещать свой вопрос в разделах комментариев для Battery University Group (BUG).

Или перейти к другой артикуле

Батареи как источник питания

Комментарии (3)


24 июня 2019 г., 3:23

Винод Кирти написал:

Хорошая статья.
Кроме того, позвольте мне узнать стандартную процедуру измерения внутреннего сопротивления элемента.
Есть ли стандарт (IEC / IEEE)?

19 марта 2013 г., 7:04

Shindinp написал:

Красивый и даже лучший из лучших блогов, которые мне довелось увидеть, это просто здорово для меня Очень важно, и переполняя простую жизнь и живя здесь меня поразило нафик.

17 августа 2012 г., 2:08

Titan SolarCo написал:

Вы определенно понимаете, как выявить дилемму, сделав ее полезной.Намного больше людей должны прочитать это и оценить эту часть статьи. У вас действительно потрясающие статьи. Благодарим за то, что поделились с нами своим сайтом.

Преимущества и ограничения различных типов батарей

Нас часто озадачивают объявления о новых батареях, которые, как говорят, обладают очень высокой плотностью энергии, обеспечивают 1000 циклов заряда / разряда и являются тонкими как бумага. Они настоящие? Возможно — но не в одном аккумуляторе.Хотя один тип батарей может быть рассчитан на малый размер и длительное время работы, этот аккумулятор не прослужит долго и преждевременно изнашивается. Другой аккумулятор может быть рассчитан на долгий срок службы, но его размер будет большим и громоздким. Третья батарея может обеспечить все желаемые характеристики, но цена будет слишком высокой для коммерческого использования.

Производители аккумуляторов хорошо осведомлены о потребностях клиентов и в ответ предлагают пакеты, которые лучше всего подходят для конкретных приложений. Индустрия мобильных телефонов — пример умной адаптации.Акцент делается на небольшие размеры, высокую удельную энергию и невысокую цену. На втором месте — долголетие.

Надпись NiMH на батарейном блоке не гарантирует автоматически высокую плотность энергии. Например, призматический никель-металлогидридный аккумулятор для мобильного телефона имеет тонкую форму. Такой пакет обеспечивает плотность энергии около 60 Втч / кг, а количество циклов составляет около 300. Для сравнения, цилиндрический NiMH аккумулятор обеспечивает плотность энергии 80 Втч / кг и выше. Тем не менее, количество циклов этой батареи от умеренного до низкого.NiMH аккумуляторы высокой прочности, выдерживающие 1000 разрядов, обычно упаковываются в громоздкие цилиндрические элементы. Плотность энергии этих ячеек составляет скромные 70 Втч / кг.

Компромиссы существуют и в отношении литиевых батарей. Литий-ионные блоки производятся для оборонных приложений, плотность энергии которых намного превышает их коммерческий эквивалент. К сожалению, эти литий-ионные аккумуляторы сверхвысокой емкости считаются небезопасными в руках населения, а высокая цена делает их недоступными для коммерческого рынка.

В этой статье мы рассмотрим преимущества и ограничения серийного аккумулятора. Так называемые чудо-батареи, которые просто живут в контролируемой среде, исключаются. Мы тщательно изучаем батареи не только с точки зрения удельной энергии, но и с точки зрения долговечности, характеристик нагрузки, требований к техническому обслуживанию, саморазряда и эксплуатационных расходов. Поскольку никель-кадмиевые батареи остаются стандартом, с которым сравнивают другие батареи, мы сравниваем альтернативные химические составы с этим классическим типом батарей.

Никель-кадмий (NiCd) — зрелый и хорошо изученный, но с относительно низкой плотностью энергии. NiCd используется там, где важны долгий срок службы, высокая скорость разряда и экономичная цена. Основные области применения — двусторонняя радиосвязь, биомедицинское оборудование, профессиональные видеокамеры и электроинструменты. NiCd содержит токсичные металлы и не наносит вреда окружающей среде.

Никель-металлогидрид (NiMH) — имеет более высокую плотность энергии по сравнению с NiCd за счет сокращения срока службы.NiMH не содержит токсичных металлов. Приложения включают мобильные телефоны и портативные компьютеры.

Свинцово-кислотный — наиболее экономичный для мощных систем, где вес не имеет большого значения. Свинцово-кислотные батареи являются предпочтительным выбором для больничного оборудования, инвалидных колясок, аварийного освещения и систем ИБП.

Lithium Ion (Li ‑ ion) — самая быстрорастущая аккумуляторная система. Литий-ионный используется там, где первостепенное значение имеют высокая плотность энергии и легкий вес. Технология хрупкая, и для обеспечения безопасности требуется схема защиты.Приложения включают портативные компьютеры и сотовые телефоны.

Литий-ионный полимер (литий-ионный полимер) — предлагает атрибуты литий-ионного аккумулятора в сверхтонкой геометрии и упрощенной упаковке. Основные приложения — мобильные телефоны.

На рисунке 1 сравниваются характеристики шести наиболее часто используемых систем аккумуляторных батарей с точки зрения плотности энергии, срока службы, требований к упражнениям и стоимости. Цифры основаны на средних номиналах имеющихся в продаже батарей на момент публикации.

NiCd NiMH Свинцово-кислотный Литий-ионный Литий-ионный полимерный Многоразовые
Щелочные
Гравиметрическая плотность энергии (Втч / кг) 45-80 60-120 30-50 110–160 100–130 80 (начальная)
Внутреннее сопротивление
(включая периферийные цепи) в мОм
От 100 до 200 1
6 В, упаковка
От 200 до 300 1
6 В, упаковка
<100 1
12В в упаковке
От 150 до 250 1
7.2V упаковка
От 200 до 300 1
7,2 В, упаковка
От 200 до 2000 1
6 В, упаковка
Срок службы (до 80% от начальной емкости) 1500 2 От 300 до 500 2,3 От 200 до
300 2
От 500 до 1000 3 От 300 до
500
50 3
(до 50%)
Время быстрой зарядки 1 час типичный 2-4ч 8-16ч 2-4ч 2-4ч 2-3 часа
Допуск перезарядки умеренный низкий высокий очень низкий низкий умеренный
Саморазряд / месяц (комнатная температура) 20% 4 30% 4 5% 10% 5 ~ 10% 5 0.3%
Напряжение элемента (номинальное) 1,25 В 6 1,25 В 6 3,6 В 3,6 В 1,5 В
Ток нагрузки
— пик
— лучший результат

20C
1C

5C
0,5C или ниже

7
0.2C

> 2C
1C или ниже

> 2C
1C или ниже

0,5C
0,2C или ниже
Рабочая температура (только нагнетание) От -40 до
60 ° C
От -20 до
60 ° C
От -20 до
60 ° C
От -20 до
60 ° C
От 0 до
60 ° C
От 0 до
65 ° C
Требования к техническому обслуживанию От 30 до 60 дней От 60 до 90 дней От 3 до 6 месяцев 9 не требуется не требуется не требуется
Типичная стоимость батареи
(долл. США, только для справки)
50 долларов США
(7,2 В)
$ 60
(7,2 В)
25 долларов США
(6V)
100 $
(7,2 В)
$ 100
(7,2 В)
$ 5
(9V)
Стоимость цикла (долл. США) 11 $ 0.04 0,12 доллара США 0,10 долл. США 0,14 долл. США 0,29 долл. США 0,10–0,50 долл. США
Коммерческое использование с 1950 1990 1970 (герметичный свинцово-кислотный) 1991 1999 1992

Рисунок 1: Характеристики обычно используемых аккумуляторных батарей

  1. Внутреннее сопротивление аккумуляторной батареи зависит от номинала ячеек, типа схемы защиты и количества ячеек.Схема защиты из литий-ионных и литий-полимерных добавляет около 100 мОм.
  2. Срок службы зависит от регулярного обслуживания батареи. Несоблюдение периодических циклов полной разрядки может сократить срок службы в три раза.
  3. Срок службы зависит от глубины разряда. Мелкие разряды обеспечивают больше циклов, чем глубокие разряды.
  4. Разряд достигает максимума сразу после зарядки, а затем спадает. Емкость NiCd уменьшается на 10% в первые 24 часа, а затем снижается примерно до 10% каждые 30 дней.Саморазряд увеличивается с повышением температуры.
  5. Цепи внутренней защиты обычно потребляют 3% накопленной энергии в месяц.
  6. 1,25 В — напряжение открытой ячейки. Обычно используется значение 1,2 В. Между ячейками нет разницы; это просто метод оценки.
  7. Способен к сильноточным импульсам.
  8. Относится только к разряду; диапазон температур заряда более ограничен.
  9. Техническое обслуживание может осуществляться в форме «выравнивающего» или «дополнительного» заряда.
  10. Стоимость аккумулятора для имеющихся в продаже портативных устройств.
  11. Рассчитывается из цены батареи, разделенной на срок службы. Не включает стоимость электричества и зарядных устройств.

Наблюдение: Интересно отметить, что NiCd имеет самое короткое время зарядки, обеспечивает самый высокий ток нагрузки и предлагает самую низкую общую стоимость цикла, но при этом предъявляет самые высокие требования к техническому обслуживанию.

Никель-кадмиевый (NiCd) аккумулятор

NiCd предпочитает быструю зарядку медленной зарядке и импульсную зарядку постоянному току.Все остальные химические соединения предпочитают неглубокий разряд и умеренные токи нагрузки. NiCd — сильный и тихий рабочий; каторжный труд не представляет проблемы. Фактически, NiCd — единственный тип батарей, который хорошо работает в суровых условиях работы. Он не любит, когда его балуют днями, когда он сидит в зарядном устройстве и используется лишь изредка в течение коротких периодов времени. Периодический полный разряд настолько важен, что, если его не использовать, на пластинах ячеек образуются большие кристаллы (также называемые памятью , ), и NiCd постепенно теряет свои характеристики.

Среди перезаряжаемых батарей никель-кадмиевые батареи остаются популярным выбором для таких приложений, как двусторонняя радиосвязь, оборудование для оказания неотложной медицинской помощи и электроинструменты. Батареи с более высокой плотностью энергии и менее токсичными металлами вызывают переход от никель-кадмиевых аккумуляторов к более новым технологиям.

Преимущества и ограничения никель-кадмиевых аккумуляторов

Преимущества

Быстрая и простая зарядка — даже после длительного хранения.

Большое количество циклов заряда / разряда — при правильном обслуживании NiCd обеспечивает более 1000 циклов заряда / разряда.

Хорошие нагрузочные характеристики — NiCd позволяет заряжаться при низких температурах.

Длительный срок хранения — в любом состоянии заряда.

Простое хранение и транспортировка — большинство авиагрузов принимают NiCd без особых условий.

Хорошие низкотемпературные характеристики.

Простите, если злоупотребляли — NiCd — одна из самых прочных аккумуляторных батарей.

Экономичная цена — NiCd — это самый дешевый аккумулятор с точки зрения затрат на цикл.

Доступен в широком диапазоне размеров и вариантов исполнения — большинство никель-кадмиевых элементов имеют цилиндрическую форму.

Ограничения

Относительно низкая плотность энергии — по сравнению с более новыми системами.

Эффект памяти — необходимо периодически тренировать NiCd, чтобы предотвратить запоминание.

Экологичность — NiCd содержит токсичные металлы. Некоторые страны ограничивают использование никель-кадмиевых батарей.

Имеет относительно высокий саморазряд — после хранения требует подзарядки.

Рисунок 2: Преимущества и недостатки никель-кадмиевых батарей.

Никель-металлогидридный (NiMH) аккумулятор

Исследование системы NiMH началось в 1970-х годах как средство обнаружения того, как хранить водород для никель-водородной батареи .Сегодня никель-водородные батареи используются в основном для спутниковой связи. Они громоздкие, содержат стальные баллончики высокого давления и стоят тысячи долларов за элемент.

В первые дни экспериментов с NiMH батареями сплавы гидридов металлов были нестабильны в окружающей среде элемента, и желаемые рабочие характеристики не могли быть достигнуты. В результате разработка NiMH замедлилась. В 1980-х годах были разработаны новые гидридные сплавы, которые были достаточно стабильны для использования в электролизере.С конца 1980-х годов NiMH неуклонно совершенствовалась.

Успех NiMH обусловлен его высокой плотностью энергии и использованием экологически чистых металлов. Современные никель-металлгидридные аккумуляторы обеспечивают на 40 процентов более высокую плотность энергии по сравнению с никель-кадмиевыми сплавами. Есть потенциал для еще более высоких возможностей, но не без некоторых отрицательных побочных эффектов.

NiMH менее долговечен, чем NiCd. Езда на велосипеде под большой нагрузкой и хранение при высокой температуре сокращает срок службы. NiMH страдает от сильного саморазряда, который значительно больше, чем у NiCd.

NiMH заменяет NiCd на таких рынках, как беспроводная связь и мобильные вычисления. Во многих частях мира покупателю рекомендуется использовать никель-металлогидридные, а не никель-кадмиевые батареи. Это связано с заботой об окружающей среде по поводу небрежной утилизации использованной батареи.

Эксперты сходятся во мнении, что NiMH значительно улучшился за эти годы, но ограничения остаются. Большинство недостатков присущи никелевой технологии и присущи никель-кадмиевым батареям.Широко признано, что NiMH — это промежуточный этап в технологии литиевых батарей.

Преимущества и ограничения NiMH аккумуляторов

Преимущества

Емкость на 30-40% выше, чем у стандартного никель-кадмиевого сплава.NiMH обладает потенциалом для еще более высокой плотности энергии.

Менее подвержен памяти, чем NiCd. Периодические циклы упражнений требуются реже.

Простое хранение и транспортировка — условия транспортировки не подлежат нормативному контролю.

Экологичность — содержит только легкие токсины; выгодно для вторичной переработки.

Ограничения

Ограниченный срок службы — при многократном глубоком цикле, особенно при высоких токах нагрузки, производительность начинает ухудшаться после 200–300 циклов.Предпочтительны мелкие, а не глубокие циклы разряда.

Ограниченный ток разряда — хотя никель-металлгидридная батарея способна обеспечивать высокие токи разряда, повторные разряды с высокими токами нагрузки сокращают срок службы батареи. Наилучшие результаты достигаются при токах нагрузки от 0,2 до 0,5 ° C (от одной пятой до половины номинальной мощности).

Требуется более сложный алгоритм зарядки — NiMH выделяет больше тепла во время зарядки и требует более длительного времени зарядки, чем NiCd.Капельный заряд имеет решающее значение и требует тщательного контроля.

Высокий саморазряд — саморазряд NiMH примерно на 50 процентов выше, чем у NiCd. Новые химические добавки улучшают саморазряд, но за счет более низкой плотности энергии.

Производительность ухудшается при хранении при повышенных температурах — NiMH следует хранить в прохладном месте и при уровне заряда около 40 процентов.

Высокие эксплуатационные расходы — аккумулятор требует регулярной полной разрядки для предотвращения образования кристаллов.

Примерно на 20 процентов дороже, чем NiCd — NiMH аккумуляторы, рассчитанные на большой ток, дороже, чем обычная версия.

Рисунок 3: Преимущества и ограничения NiMH аккумуляторов

Свинцово-кислотный аккумулятор

Свинцово-кислотный аккумулятор, изобретенный французским врачом Гастоном Планте в 1859 году, стал первым перезаряжаемым аккумулятором для коммерческого использования.Сегодня залитые свинцово-кислотные батареи используются в автомобилях, вилочных погрузчиках и крупных системах бесперебойного питания (ИБП).

В середине 1970-х годов исследователи разработали необслуживаемую свинцово-кислотную батарею, которая могла работать в любом положении. Жидкий электролит был преобразован в увлажненные сепараторы, и корпус был герметизирован. Были добавлены предохранительные клапаны, позволяющие выпускать газ во время зарядки и разрядки.

Под влиянием разных приложений появилось два обозначения батарей.Это небольшая герметичная свинцово-кислотная система (SLA), также известная под торговой маркой Gelcell, и свинцово-кислотная кислота с большим клапаном (VRLA). Технически обе батареи одинаковые. (Инженеры могут возразить, что слово «герметичный свинцово-кислотный» употребляется неправильно, потому что ни одна свинцово-кислотная батарея не может быть полностью герметичной.) Из-за того, что мы делаем упор на портативные батареи, мы ориентируемся на SLA.

В отличие от свинцово-кислотных аккумуляторных батарей, SLA и VRLA спроектированы с низким потенциалом перенапряжения, чтобы не дать аккумулятору достичь своего газогенерирующего потенциала во время зарядки.Избыточная зарядка вызовет газообразование и истощение воды. Следовательно, эти батареи никогда не могут быть полностью заряжены.

Свинцово-кислотный не подлежит памяти. Если оставить аккумулятор на плавающем заряде в течение длительного времени, это не приведет к повреждению. У аккумулятора лучше всего сохраняется заряд среди аккумуляторных батарей. В то время как NiCd саморазряжается примерно на 40 процентов своей накопленной энергии за три месяца, SLA саморазряжает такое же количество за один год. SLA относительно недорого купить, но эксплуатационные расходы могут быть дороже, чем у NiCd, если полные циклы требуются на повторяющейся основе.

SLA не предусматривает быстрой зарядки — типичное время зарядки составляет от 8 до 16 часов. Соглашение об уровне обслуживания должно всегда храниться в заряженном состоянии. Оставление аккумулятора в разряженном состоянии вызывает сульфатирование, состояние, при котором аккумулятор трудно, а то и невозможно перезарядить.

В отличие от NiCd, SLA не любит глубоких циклов. Полная разрядка вызывает дополнительную нагрузку, и каждый цикл лишает аккумулятор небольшой емкости. Эта характеристика износа в той или иной степени применима и к батареям другого химического состава.Чтобы предотвратить перегрузку аккумулятора из-за повторяющейся глубокой разрядки, рекомендуется использовать более крупный аккумулятор SLA.

В зависимости от глубины разряда и рабочей температуры SLA обеспечивает от 200 до 300 циклов разрядки / зарядки. Основная причина относительно короткого срока службы — это коррозия сетки положительного электрода, истощение активного материала и расширение положительных пластин. Эти изменения наиболее распространены при более высоких рабочих температурах. Езда на велосипеде не предотвращает и не обращает вспять тенденции.

Оптимальная рабочая температура для батарей SLA и VRLA составляет 25 ° C (77 ° F). Как показывает практика, повышение температуры на 8 ° C (15 ° F) сокращает срок службы батареи вдвое. VRLA, который прослужит 10 лет при 25 ° C, будет годен только 5 лет при эксплуатации при 33 ° C (95 ° F). Та же батарея проработает чуть больше одного года при температуре 42 ° C (107 ° F).

Среди современных аккумуляторных батарей семейство свинцово-кислотных аккумуляторов имеет самую низкую плотность энергии, что делает их непригодными для портативных устройств, требующих компактных размеров.К тому же производительность при низких температурах оставляет желать лучшего.

SLA рассчитан на 5-часовую разрядку или 0,2 ° C. Некоторые батареи даже рассчитаны на медленную 20-часовую разрядку. Чем больше время разряда, тем выше показания емкости. SLA хорошо работает при высоких импульсных токах. Во время этих импульсов может быть достигнута скорость разряда, значительно превышающая 1С.

С точки зрения утилизации SLA менее опасен, чем NiCd аккумулятор, но высокое содержание свинца делает SLA экологически вредным.

Преимущества и недостатки свинцово-кислотных аккумуляторов

Преимущества

Недорого и просто в изготовлении — с точки зрения стоимости ватт-часов SLA является наименее дорогим.

Зрелая, надежная и хорошо изученная технология — при правильном использовании соглашение об уровне обслуживания является долговечным и обеспечивает надежное обслуживание.

Низкий саморазряд — скорость саморазряда одна из самых низких среди аккумуляторных систем.

Низкие требования к обслуживанию — нет памяти; нет электролита для заполнения.

Способен к высокой скорости разряда.

Ограничения

Нельзя хранить в разряженном состоянии.

Низкая плотность энергии — плохое соотношение веса и плотности энергии ограничивает использование в стационарных и колесных установках.

Допускает лишь ограниченное количество полных циклов разряда — хорошо подходит для приложений в режиме ожидания, требующих лишь периодических глубоких разрядов.

Не наносит вред окружающей среде — электролит и содержащийся в нем свинец могут нанести вред окружающей среде.

Ограничения на транспортировку затопленной свинцовой кислоты — существуют экологические проблемы, связанные с утечкой в ​​случае аварии.

При неправильной зарядке может произойти тепловой пробой.

Рисунок 4: Преимущества и недостатки свинцово-кислотных аккумуляторов.

Литий-ионный аккумулятор

Пионерские работы с литиевой батареей начались в 1912 году под руководством Г. Льюиса, но только в начале 1970-х годов первые неперезаряжаемые литиевые батареи стали коммерчески доступными.Литий — самый легкий из всех металлов, имеет наибольший электрохимический потенциал и обеспечивает наибольшую удельную плотность энергии.

Попытки разработать перезаряжаемые литиевые батареи последовали в 1980-х годах, но потерпели неудачу из-за проблем с безопасностью. Из-за присущей металлическому литию нестабильности, особенно во время зарядки, исследования переключились на неметаллическую литиевую батарею, использующую ионы лития. Хотя литий-ионный аккумулятор немного ниже по плотности энергии, чем металлический литий, он безопасен при соблюдении определенных мер предосторожности при зарядке и разрядке.В 1991 году корпорация Sony выпустила на рынок первый литий-ионный аккумулятор. Другие производители последовали их примеру. Сегодня литий-ионные аккумуляторы являются наиболее быстрорастущими и многообещающими.

Плотность энергии литий-ионных аккумуляторов обычно вдвое больше, чем у стандартных никель-кадмиевых аккумуляторов. Улучшение электродных активных материалов может увеличить плотность энергии почти в три раза по сравнению с NiCd. В дополнение к высокой емкости, нагрузочные характеристики достаточно хороши и ведут себя аналогично NiCd с точки зрения характеристик разряда (аналогичная форма профиля разряда, но другое напряжение).Плоская кривая разряда обеспечивает эффективное использование накопленной мощности в желаемом спектре напряжения.

Высокое напряжение ячеек позволяет использовать аккумуляторные блоки только с одной ячейкой. Большинство современных мобильных телефонов работают от одной ячейки, что упрощает конструкцию батарей. Для поддержания той же мощности потребляются более высокие токи. Низкое сопротивление элемента важно для обеспечения неограниченного протекания тока во время импульсов нагрузки.

Литий-ионная батарея не требует особого обслуживания, а это преимущество, на которое не может претендовать большинство других химикатов.Память отсутствует, и для продления срока службы батареи не требуется никаких плановых циклов. Кроме того, саморазряд менее чем наполовину по сравнению с NiCd, что делает литий-ионный аккумулятор хорошо подходящим для современных датчиков уровня топлива. Литий-ионные элементы при утилизации не причиняют особого вреда.

Несмотря на свои общие преимущества, литий-ионный аккумулятор также имеет свои недостатки. Он хрупкий и требует схемы защиты для обеспечения безопасной работы. Схема защиты, встроенная в каждую батарею, ограничивает пиковое напряжение каждой ячейки во время зарядки и предотвращает слишком низкое падение напряжения ячейки при разряде.Кроме того, контролируется температура ячейки, чтобы предотвратить перепады температур. Максимальный ток заряда и разряда ограничен от 1С до 2С. При соблюдении этих мер предосторожности возможность появления металлического литиевого покрытия из-за перезарядки практически исключается.

Старение является проблемой для большинства литий-ионных аккумуляторов, и многие производители умалчивают об этой проблеме. Некоторое ухудшение емкости заметно через год, независимо от того, используется аккумулятор или нет. Через два или, возможно, три года батарея часто выходит из строя.Следует отметить, что другие химические вещества также обладают возрастными дегенеративными эффектами. Это особенно актуально для NiMH при воздействии высоких температур окружающей среды.

Хранение батареи в прохладном месте замедляет процесс старения литий-ионных (и других химических компонентов). Производители рекомендуют хранить при температуре 15 ° C (59 ° F). Кроме того, при хранении аккумулятор должен быть частично заряжен.

Производители постоянно улучшают химический состав литий-ионных аккумуляторов.Новые и улучшенные химические комбинации вводятся каждые шесть месяцев или около того. При таком быстром прогрессе трудно оценить, насколько долго обновленная батарея устареет.

Самый экономичный литий-ионный аккумулятор с точки зрения соотношения стоимости и энергии — это цилиндрический аккумулятор 18650. Эта ячейка используется для мобильных вычислений и других приложений, не требующих ультратонкой геометрии. Если требуется более тонкий блок (менее 18 мм), призматический литий-ионный элемент является лучшим выбором. По сравнению с 18650 нет увеличения плотности энергии, однако стоимость получения той же энергии может удвоиться.

Для сверхтонкой геометрии (менее 4 мм) единственным выбором является литий-ионный полимер. Это самая дорогая система по соотношению затрат и энергии. Никакого выигрыша в плотности энергии нет, а долговечность уступает прочному элементу 18560.

Преимущества и ограничения литий-ионных аккумуляторов

Преимущества

Высокая плотность энергии — потенциал для еще более высоких мощностей.

Относительно низкий саморазряд — саморазряд вдвое меньше, чем у NiCd и NiMH.

Низкие эксплуатационные расходы — периодическая разрядка не требуется; нет памяти.

Ограничения

Требуется схема защиты — схема защиты ограничивает напряжение и ток. Батарея безопасна, если ее не спровоцировать.

Подвержен старению, даже если он не используется — хранение аккумулятора в прохладном месте и при 40-процентном уровне заряда снижает эффект старения.

Умеренный ток разряда.

В соответствии с правилами транспортировки — отправка больших партий литий-ионных аккумуляторов может подлежать нормативному контролю. Это ограничение не распространяется на ручные аккумуляторные батареи.

Дороговизна в производстве — примерно на 40% дороже, чем NiCd. Более совершенные технологии производства и замена редких металлов более дешевыми альтернативами, вероятно, снизят цену.

Не до конца зрелые — изменения в комбинациях металлов и химикатов влияют на результаты тестирования батарей, особенно с некоторыми быстрыми методами тестирования.

Рисунок 5: Преимущества и ограничения литий-ионных аккумуляторов

Литий-полимерный аккумулятор

Литий-полимерный аккумулятор отличается от других аккумуляторных систем типом используемого электролита. В оригинальной конструкции 1970-х годов используется сухой твердый полимерный электролит. Этот электролит напоминает пластиковую пленку, которая не проводит электричество, но позволяет обмениваться ионами (электрически заряженными атомами или группами атомов).Полимерный электролит заменяет традиционный пористый сепаратор, пропитанный электролитом.

Конструкция из сухого полимера предлагает упрощения в отношении изготовления, прочности, безопасности и геометрии тонкого профиля. Нет опасности воспламенения, поскольку не используется жидкий или гелеобразный электролит. При толщине ячейки всего один миллиметр (0,039 дюйма) конструкторы оборудования предоставлены самому себе в плане формы, формы и размера.

К сожалению, сухой литий-полимер имеет плохую проводимость.Внутреннее сопротивление слишком велико и не может обеспечить всплески тока, необходимые для современных устройств связи и раскрутки жестких дисков мобильного вычислительного оборудования. Нагревание ячейки до 60 ° C (140 ° F) и выше увеличивает проводимость, но это требование не подходит для портативных приложений.

Чтобы сделать небольшую литий-полимерную батарею проводящей, было добавлено немного гелеобразного электролита. Большинство коммерческих литий-полимерных аккумуляторов, используемых сегодня для мобильных телефонов, являются гибридными и содержат гелеобразный электролит.Правильный термин для этой системы — Литий-ионный полимер . В рекламных целях большинство производителей аккумуляторов маркируют их просто как Li-полимерные . Поскольку гибридный литий-полимерный аккумулятор на сегодняшний день является единственным действующим полимерным аккумулятором для портативного использования, мы сосредоточимся на этой химии.

В чем же тогда разница между классическим литий-ионным и литий-ионным полимером с добавлением гелеобразного электролита? Хотя характеристики и производительность этих двух систем очень похожи, литий-ионный полимер уникален тем, что твердый электролит заменяет пористый сепаратор.Гелеобразный электролит просто добавляют для повышения ионной проводимости.

Технические трудности и задержки в массовом производстве задержали внедрение литий-ионных полимерных аккумуляторов. Кроме того, обещанное превосходство литий-ионного полимера еще не реализовано. Никаких улучшений в увеличении емкости не достигается — фактически, емкость немного меньше, чем у стандартной литий-ионной батареи. В настоящее время нет преимущества в стоимости. Основная причина перехода на литий-ионный полимер — это форм-фактор.Он позволяет использовать тонкую пластину с геометрической формой, которая востребована в высококонкурентной индустрии мобильных телефонов.

Преимущества и ограничения литий-ионных полимерных аккумуляторов

Преимущества

Очень низкий профиль — возможны батареи, которые напоминают профиль кредитной карты.

Гибкий форм-фактор — производители не ограничиваются стандартными форматами ячеек. При большом объеме можно экономично произвести любой разумный размер.

Легкий вес — гелеобразные, а не жидкие электролиты позволяют упростить упаковку, в некоторых случаях исключая металлическую оболочку.

Повышенная безопасность — более устойчивая к перезарядке; меньше шансов на утечку электролита.

Ограничения

Более низкая плотность энергии и меньшее количество циклов по сравнению с литий-ионными батареями — потенциал для улучшений существует.

Дороговизна в производстве — после массового производства литий-ионный полимер может иметь более низкую стоимость. Уменьшение схемы управления компенсирует более высокие производственные затраты.

Последнее обновление 21.03.2017

*** Пожалуйста, прочтите комментарии ***

Комментарии предназначены для «комментирования», открытого обсуждения среди посетителей сайта.Battery University отслеживает комментарии и понимает важность выражения точек зрения и мнений на общем форуме. Однако при общении необходимо использовать соответствующий язык, избегая спама и дискриминации.

Если у вас есть предложение или вы хотите сообщить об ошибке, воспользуйтесь формой «свяжитесь с нами» или напишите нам по адресу: [email protected] Нам нравится получать от вас известия, но мы не можем ответить на все запросы. Мы рекомендуем размещать свой вопрос в разделах комментариев для Battery University Group (BUG).

Или перейти к другому архиву

Никель-кадмиевые батареи — обзор

9 Никель-кадмиевые батареи

Никель-кадмиевые (Ni-Cd) батареи в заряженном состоянии имеют положительные пластины с оксигидроксидом никеля (NiOOH) в качестве активного материала, отрицательные пластины с мелко измельченным кадмием металл в качестве активного материала и электролит гидроксида калия (КОН) в воде (20–35% по весу). При разряде NiOOH положительной пластины преобразуется в Ni (OH) 2 , а металлический кадмий отрицательной пластины превращается в Cd (OH) 2 .

Основные реакции:

Всего: 2NiOOH + заряженный C + 2h3O⇔2NI (OH) 2 + Cd (OH) 2 разряженный

На положительной пластине: NiOOH + h3O + электронно заряженный Ni (OH) 2 + OH-разряженный

На отрицательной пластине: Cd + 2OH — заряженный Cd (OH) 2 + 2e — разряженный

Обратите внимание, что в никель-кадмиевой батарее электролит KOH не участвует в реакциях заряда или разряда. Это означает, что концентрация электролита не изменяется при зарядке и разрядке, и при этом для реакции разряда не требуется адекватное поступление ионов из электролита, чтобы гарантировать достижение полной емкости.Оба эти явления отличаются от поведения свинцово-кислотной батареи.

Система никель-кадмиевых батарей имеет номинальное напряжение 1,2 В / элемент. Типичное конечное напряжение для разряда в фотоэлектрических системах составляет 0,9–1,0 В / элемент, а типичное конечное напряжение для зарядки в фотоэлектрических системах варьируется от 1,45 до 1,6 В / элемент, в зависимости от батареи, контроллера и типа системы. Нет никакой связи между напряжением холостого хода и SOC.

В фотоэлектрических системах никель-кадмиевые батареи обычно выбирают вместо свинцово-кислотных аккумуляторов, когда они работают при очень низких (минусовых) или очень высоких (более 40 ° C) температурах, когда свинцово-кислотные батареи могут замерзать или замерзать. соответственно значительно сокращенный срок службы.Промышленные никель-кадмиевые батареи открытого типа обычно в 3–4 раза дороже на киловатт-час хранимой энергии, чем промышленные свинцово-кислотные батареи открытого типа.

Хотя одиночный никель-кадмиевый элемент может быть полностью разряжен (до 0 В) без ущерба, не рекомендуется позволять всей батарее разряжаться до очень низких напряжений. Это связано с тем, что некоторые элементы неизбежно будут иметь меньшую емкость, чем другие, и если разряд батареи превышает их предел емкости, элементы с низкой емкостью могут быть переведены в обратную полярность (т.е., будут иметь напряжение менее 0 В), что может сократить срок их службы. Поэтому обычно указывается, что никель-кадмиевый аккумулятор в фотоэлектрической системе имеет максимальную глубину разряда 90%.

Промышленные никель-кадмиевые батареи, используемые в фотоэлектрических системах, обычно открытого типа, предназначены для использования в режиме ожидания при низкой скорости разряда. Они могут быть типа карманных пластин или волоконных пластин. Во всем мире настаивают на запрете никель-кадмиевых батарей из-за проблем с токсичными отходами, и это уже произошло в ЕС [1] в отношении небольших герметичных батарей потребительского типа, для которых доступны альтернативные типы батарей.Однако для более крупных батарей в настоящее время нет альтернативной системы с аналогичными свойствами, и трудно понять, как их можно запретить, прежде чем такая альтернативная система станет доступной. Следует иметь в виду, что любую никель-кадмиевую батарею, предназначенную для фотоэлектрической системы, необходимо правильно утилизировать по окончании срока службы (путем возврата производителю для переработки или через утвержденную организацию по переработке батарей).

Эффект памяти — это явление, которое наблюдается в некоторых типах никель-кадмиевых аккумуляторов при неглубоком цикле эксплуатации, но не в открытых типах карманных пластин, используемых в более крупных стационарных фотоэлектрических системах, о которых идет речь в этой главе.Эффект памяти описывает потерю батареей способности обеспечивать полную емкость при нормальном напряжении при регулярном неглубоком цикле без полной разрядки. Оставшаяся мощность, которая не использовалась регулярно, будет доступна, но при более низком напряжении. Считается, что причина этого эффекта памяти связана с образованием крупных кристаллов в кадмиевом электроде в присутствии большой площади поверхности металлического никеля. Поэтому это происходит в основном в никель-кадмиевых батареях с спеченными пластинами (как открытых, так и вентилируемых), но не в типах карманных или волоконных пластин, используемых в более крупных автономных фотоэлектрических системах в экстремальных температурных условиях.

Большинство промышленных никель-кадмиевых резервных аккумуляторов стандартно поставляются с 20% -ным электролитом КОН. Температура замерзания составляет -25 ° C. Если причина выбора никель-кадмиевой батареи, а не свинцово-кислотной, состоит в том, чтобы предотвратить проблемы с замерзанием, эта точка замерзания может быть недостаточно низкой, и может потребоваться использование 30% -ного электролита KOH с точкой замерзания -58. ° C.

Никель-кадмиевая батарея — обзор

24,1

Во многих электронных калькуляторах используются аккумуляторные никель-кадмиевые батареи.Общее уравнение для спонтанной реакции в этих ячейках:

Cd (s) + NiO2 (s) + 2h3O → KOHCd (OH) 2 (s) + Ni (OH) 2 (s)

Каковы степени окисления Cd в (а) Cd и (б) Cd (OH) 2 и Ni в (в) NiO 2 и (г) Ni (OH) 2 ? Что такое (e) окислитель, (f) восстановитель, (g) окисленное вещество и (h) восстановленное вещество? Напишите сокращенное обозначение (i) редукционных пар и (j) всей ячейки. Во время экзамена калькулятор студента дал сбой. (K) Что произошло химически? (l) Напишите общее уравнение для цикла перезарядки этого элемента.(m) Является ли КОН в этой ячейке катализатором?
24,2

Какие утверждения верны? Перепишите любое ложное утверждение, сделав его правильным.

(a)

Гальванический элемент вырабатывает электрическую энергию в результате спонтанной реакции окисления-восстановления.

(b)

Анод — это электрод, на котором происходит восстановление.

(c)

Электродом, который является источником электронов, является отрицательный электрод.

(d)

Катионы всегда заряжены положительно и движутся к катоду.

(e)

Ячейки, разработанные в начале истории электрохимии, известны как первичные ячейки.

(f)

Во время быстрой зарядки может быть доставлено столько же кулонов, сколько во время медленной зарядки свинцовой аккумуляторной батареи.

24,3

Проведите четкое различие между терминами анод и катод .В ячейке какого типа анод может быть отрицательным по отношению к катоду? Может ли анод быть положительным по отношению к катоду?

24,4

Подготовьте простой эскиз гальванической ячейки, показывающий анод, катод, знаки электродов и направление потока ионов для ячейки, представленной обозначением Ag ( s ) | AgCl ( с ) | HCl ( водн. ) | Cl 2 ( г ) | (графит). Нужен ли солевой мостик для этой реакции в этих условиях?

24.5

Подготовьте простой эскиз электролитической ячейки, показывающий анод, катод, знаки электродов и направление потока ионов для реакции, заданной уравнением

MgF2 (l) → Mg (s) + F2 (g)

24,6

Различают первичные и вторичные (накопительные) ячейки. Назовите ячейку каждого типа, который играет важную роль в нашей повседневной жизни. Напишите реакции полуэлементов и общую реакцию клетки для каждого примера.

24.7

* Ячейка Эдисона, представленная Fe | Fe (OH) 2 | LiOH, KOH | Ni (OH) 2 | NiO ° OH, иногда используется вместо свинцовых аккумуляторных батарей, когда важен вес. Напишите полуреакции, описывающие процессы окисления и восстановления, и напишите общую реакцию клетки.

24,8

Определите E º и E для реакции

Fe + 2Fe3 + → 3Fe2 +

, учитывая, что E º = −0.409 В для Fe 2+ / Fe и 0,770 В для Fe 3+ / Fe 2+ при 25 ° C. Предположим, что концентрации иона железа (II) и иона железа (III) равны 1,0 × 10 −3 M и 1,5 M , соответственно.
24,9

Рассмотрим ячейку, представленную обозначением Zn | ZnCl 2 ( водн. ) | Cl 2 (1 атм) | (графит). (a) Нарисуйте ячейку, показывающую анод, катод, направление потока электронов, потока ионов и т. д. (b) Стандартные потенциалы восстановления равны -0.7628 В для Zn 2+ / Zn и 1,3583 В для Cl 2 / Cl при 25 ° C. Рассчитайте ЭДС для ячейки при стандартных условиях состояния. (c) Найдите E для ячейки, когда концентрация ZnCl 2 составляет 0,1 M .

24.10

Изобразите экспериментальную схему для ячейки, заданную формулой (Pt) | H 2 ( г ) | HCl ( водн. ) | Fe 3+ ( водн. ), Fe 2+ ( водн. ) | (Pt).Обязательно укажите обозначения электродов, названия электродов и т. Д. При 25ºC E º = 0,770 В для Fe 3- / Fe 2+ . Напишите общую реакцию и вычислите E , если [H + ] = 0,1 M , [Fe 3+ ] = 0,1 M , [Fe 2+ ] = 0,01 M и P H 2 = 1,33 атм.

24,11

Напишите сбалансированное уравнение для полуреакции, которая происходит на каждом электроде при пропускании электрического тока через водный раствор следующих веществ 1 M с использованием инертных электродов: (a) AgNO 3 , (б) CuBr 2 , (в) H 2 SO 4 , (г) NaOH.Вы можете обратиться к Приложению C, чтобы решить, какая половина реакции наиболее благоприятна.

24.12

Какую массу расплавленного натрия и массу брома при стандартных условиях можно получить электролизом расплавленного бромида натрия с использованием тока 15 ампер в течение 3 часов?

24,13

Сколько времени потребуется, чтобы покрыть железный диск 5,0 г серебра, используя раствор, содержащий ион Ag (CN) 2 и ток 1.5 ампер?

24,14

Сколько ампер электрического тока необходимо пропустить через раствор CuSO 4 , чтобы покрыть 1,0 кг меди за 8,0 часов?

24,15

Напишите химическое уравнение электролиза достаточно концентрированного солевого раствора. Если в течение 5,0 часов пропустить 1,5 ампера, какой объем газообразного хлора будет образован, если его измерить при 745 торр и 85 ° C, если предположить, что процесс будет эффективен на 80%?

24.16

* Рассмотрим гальванический элемент, представленный Zn | Zn 2+ || Fe 3+ | Fe. (а) Напишите полураакции и общую реакцию клетки. (b) Стандартные потенциалы восстановления для Zn 2+ / Zn и Fe 3+ / Fe составляют -0,7628 В и -0,036 В, соответственно, при 25 ° C. Определите стандартное напряжение для реакции. (c) Определите E для ячейки, когда концентрация Fe 3+ составляет 10 M , а Zn 2+ составляет 1 × 10 −3 M .(d) Если из этой ячейки необходимо снять 150 миллиампер в течение 15 минут, какова минимальная масса цинкового электрода?

24,17

* Рассмотрим следующее несбалансированное уравнение:

Hg (l) + Fe3 + (водн.) → Hg22 + (водн.) + Fe2 + (водн.)

(a)

Запишите полуреакции и общая реакция клетки.

(b)

Подготовьте простой эскиз электрохимической ячейки, предназначенной для получения работы от этой реакции.Напишите сокращенное обозначение для этой ячейки. (c) Стандартные потенциалы восстановления при 25 ° C составляют 0,7961 В для Hg 2 2+ / Hg и 0,770 В для Fe 3+ / Fe 2+ . Найдите E º для реакции. Самопроизвольная реакция в стандартных государственных условиях? (d) Когда [Hg 2 2+ ] = 0,001 M , [Fe 2+ ] = 0,1 M и [Fe 3+ ] = 1,00 M , то есть E за реакцию? Является ли реакция более, менее или такой же спонтанной в этих условиях, чем в стандартных условиях?

24.18

* Ток, последовательно протекающий через 0,5 M водных растворов Ag (CN) 2 , In 2 (SO 4 ) 3 и NiSO 4 высвобождает 112 мл газообразного водорода, измеренного при стандартных условиях из водного раствора KCl. Рассчитайте вес нанесенного Ag, In и Ni, принимая в каждом случае 100% эффективность.

24,19

* Рассчитайте ток, необходимый для депозита (a) 0.50 эквивалентов, (b) 0,50 моль и (c) 0,50 г элементарной платины из раствора, содержащего ион PtCl 6 2-, в течение 5,0 часов.

24,20

* Через слабокислый водный раствор в течение 5,0 мин пропускали ток 250 миллиампер. (а) Напишите уравнения реакций, протекающих на аноде и катоде, и общей реакции. (b) Какие объемы газов будут собираться при 25ºC и 1,00 атм над водой? Давление паров воды при этой температуре составляет 23.756 торр.

24,21

* Образец Al 2 O 3 (растворенный в криолите) подвергали электролизу с использованием тока 1,00 ампер. а) Какова скорость производства Al в граммах в час? (b) Кислород, выделяющийся на положительном углеродном электроде, реагирует с углеродом с образованием CO 2 . Какая масса CO 2 производится в час?

24,22

* То же количество электричества, которое нанесло 0,583 г серебра, было пропущено через раствор соли золота и 0.Образовалось 355 г золота. (а) Рассчитайте эквивалентный вес золота. б) Какова степень окисления золота в этой соли? (c) Если использовался ток 1,0 ампер, как долго длился этот электролиз?

24,23

* Производство U из очищенной руды UO 2 состоит из следующих этапов:

UO2 + 4HF → UF4 + 2h3OUF4 + 2Mg → U + 2MgF2

Какова степень окисления U в ( а) UO 2 , б) UF 4 и в) U? Определите (г) окислитель и (д) восстановленное вещество.(f) Если вторая реакция была проведена электрохимически, прогнозируйте E º для данной реакции E º = — 1,50 В для U 4+ / U и −2,375 В для Mg 2+ / Mg. . (g) Какой ток может генерировать вторая реакция, если 1,00 г UF 4 реагирует каждую минуту? (h) Какой объем HF при 25ºC и 10,0 атм потребуется для производства 1,00 фунта U? (i) Достаточно ли 1 фунта магния для производства 1 фунта урана?

Какой аккумулятор лучше подходит для аккумуляторных инструментов

Абсолютная производительность примерно равна.Узнайте разницу между литий-ионными и никель-кадмиевыми батареями для аккумуляторных инструментов Это полностью изменило индустрию электроинструментов. Количество электроинструментов, которые продаются в настоящее время, составляет лишь небольшую часть того, что было раньше, даже 10 лет назад. [ВОСПРОИЗВЕДЕНИЕ МУЗЫКИ] Аккумуляторные батареи принесли пользу индустрии электроинструментов. Перерезание шнура дало нам возможность исправить что угодно и где угодно. Все началось с никель-кадмиевых батарей. Что касается электроинструментов, то для всего использовались никель-кадмиевые элементы. Ваш шнур — все, что было беспроводным, и никель-кадмие.Но прогресс нельзя остановить, а зачем вам это нужно? Литий-ионный аккумулятор — это новая химия аккумуляторов. То, как он развивает силу и как заряжается. Никель-кадмиевые батареи, когда они новые, полностью заряжены, могут работать около часа. Если мы сравниваем литий-ионный аккумулятор на 1,5 ампера с никель-кадмиевым аккумулятором на 1,5 ампера, вы обычно получаете в два-три раза больше времени работы с литий-ионным аккумулятором, чем над никель-кадмиевым. И эта зарядка занимает половину времени. Никель-кадмиевые батареи весят примерно на фунт больше, но стоят меньше. Но действительно ли вы экономите деньги? Если вы придете купить никель-кадмиевый аккумулятор, он может стоить 14 вольт, 18 вольт, от 60 до 80 долларов.Литий будет стоить от 120 до 140 долларов. Но учтите, что этот аккумулятор прослужит в два-три раза дольше, чем никель-кадмиевый? Хорошо, а что на самом деле стоит меньше? Выбор кажется простым, но все же есть люди, которые не расстанутся со своими старыми никель-кадмиевыми инструментами, потому что они были очень хорошо построены. И длятся они уже от 25 до 30 лет. У вас есть два варианта, но оба типа батарей по-прежнему подчиняются законам физики. Любая батарея выдержит только x зарядов, независимо от того, что вы с ней делаете.А когда придет день найти заменяющую батарею, специалисты Circle Saw будут там, чтобы помочь. Для homeshowradio.com я Том Тайнан.


Постоянный рост напряжения и приложений сделал аккумуляторные инструменты лучшим выбором для большинства проектов для вас и профессионалов. В течение многих лет никель-кадмиевые (никель-кадмиевые) батареи безраздельно господствовали. Однако в последнее время на смену им пришла новая технология литий-ионных аккумуляторов.

Литий-ионные батареи

меньше по размеру, требуют меньшего обслуживания и более безопасны для окружающей среды, чем никель-кадмиевые (NiCad) батареи.Несмотря на сходство, литий-ионные и никель-кадмиевые батареи различаются по химическому составу, влиянию на окружающую среду, применению и стоимости.

Какая батарея подходит для вашего беспроводного инструмента?

Это зависит от работы и вашего кошелька. Как правило, литий-ионные батареи меньше и легче никель-кадмиевых. Литий-ионный также в два-три раза дороже, чем NiCad. С другой стороны, литий-ионный практически не имеет саморазряда. Это позволяет хранить литий-ионный аккумулятор в течение нескольких месяцев без потери заряда.

Один не обеспечивает большей мощности, чем другой. Литий-ионный аккумулятор на 18 В имеет такой же потенциал для передачи энергии, как и никель-кадмиевый аккумулятор на 18 В. 18 В — 18 В. Насколько долго это дает — другое дело. Лучшим показателем времени работы является количество просверленных отверстий или количество плат, вырезанных за один заряд аккумулятора. В этом тесте побеждают инструменты с питанием от литий-ионных батарей.

Это больше связано с эффективностью инструмента, чем с самой батареей. Бесщеточные двигатели в большинстве инструментов с литий-ионным приводом лучше используют энергию батареи.Это приводит к заблуждению, что аккумулятор имеет большую мощность.

Батареи

NiCad имеют емкость от 1,3 Ач до 3,0 Ач. Для сравнения, литий-ионные батареи имеют диапазон от 1,1 Ач до 3,0 Ач. Точно так же, как размер бензобака является лишь одним из факторов, определяющих, как далеко транспортное средство может проехать на баллоне с бензином, приложения для каждого коэффициента заряда аккумулятора в напряжении, емкости и эффективности инструмента. Чисто как грязь?

Никель-кадмиевые батареи

Никель-кадмиевые батареи

страдают «эффектом памяти». Батарея запоминает точку в цикле зарядки, в которой началась подзарядка.При последующем использовании в этой точке напряжение будет падать, как если бы оно было разряжено. Вот почему будет разумно использовать никель-кадмиевую батарею, пока она полностью не разрядится, перед подзарядкой. При таком правильном использовании никель-кадмиевая батарея может проработать более 1000 циклов, прежде чем потеряет емкость.

Литий-ионные батареи

Литий-ионные батареи

, с другой стороны, не требуют особого обслуживания. Они противостоят «эффекту памяти» и выдерживают более широкий диапазон температур. Единственный их серьезный недостаток — хрупкость.Они также требуют схемы защиты для безопасной работы.

Оба будут работать примерно одинаковое количество циклов. Хотя литий-ионный аккумулятор может обеспечивать большее напряжение, он требует значительно более высокой стоимости по сравнению с никель-кадмиевым аккумулятором.

Поскольку абсолютные характеристики примерно равны, выбор между литий-ионными и никель-кадмиевыми батареями сводится к простым различиям: легче, долговечнее и дороже или тяжелее, расходнее и дешевле. Выбор за вами.

Вся информация по кадмию

Никель-кадмиевые батареи

Никель-кадмиевые вторичные батареи, то есть аккумуляторная батарея или элемент, содержат кадмий в качестве активного материала отрицательного электрода. Эта технология основана на обратимых электрохимических реакциях кадмия и никеля в гидроксидном (щелочном) электролите калия. На отрицательном электроде (катоде) оксид кадмия дополнительно окисляется до гидроксида кадмия при разряде, в то время как гидратированные соединения никеля на положительном электроде (аноде) восстанавливаются до гидроксида никеля, таким образом:

2Ni (OH) 2 + Cd (OH) 2 <- заряд / разряд -> 2NiO OH + Cd + 2h30

Электролит гидроксид калия не участвует в реакциях заряда-разряда и действует только как носитель заряда.В электролит можно добавить гидроксид лития, чтобы продлить срок службы положительного электрода. В результате реакции создается номинальная полезная электродвижущая сила 1,2 В на элемент.

Возможны несколько типов конструкций ячеек. Эти изменения в конструкции ячейки в основном связаны с характером используемой опоры для электродов.

Для положительного электрода различают три основных типа — карманная пластина, спеченная пластина и волоконная пластина. Подставка для электрода необходима, потому что активный материал (гидроксид никеля) обычно находится в форме порошка и содержится в пластинах карманов или смешивается со связующими или пастой и помещается в спеченные или волокнистые электроды.Следует отметить, что гидроксид никеля заметно набухает во время заряда и разряда, деформирует опору и ограничивает выбор типа опоры на положительном электроде.

В конструкциях отрицательных электродов используется более широкий спектр структур, включая карманные пластины, никелевые спеченные, волоконные и пластмассовые опоры. Именно физическая стабильность активного материала (оксида кадмия) в отрицательном электроде позволяет использовать такое большое разнообразие материалов подложки.

Кроме того, необходимо добавить графит или оксид железа, чтобы улучшить проводимость гидроксида никеля и кадмия.Кроме того, во всех типах конструкции ячеек между двумя электродами размещается разделитель для предотвращения коротких замыканий.

Никель-кадмиевые батареи

характеризуются своей устойчивостью к механическим и электрическим нагрузкам, длительным календарным и циклическим сроком службы, их превосходной способностью работать с ограниченными потерями производительности как при низких, так и при высоких температурах, а также в условиях с большими колебаниями температуры, ограниченными требованиями к техническому обслуживанию. и превосходная надежность. Более того, они не проявляют синдрома «внезапной смерти», который преобладает в стандартной (промышленной) аккумуляторной технологии.

На основе этих функций они используются в приложениях, где эти функции абсолютно необходимы, например, в критически важных промышленных установках, а также в ситуациях, когда на карту поставлена ​​человеческая жизнь.

Никель-кадмиевые аккумуляторы

бывают двух типов: портативные аккумуляторы и промышленные аккумуляторы.

(a) Переносные никель-кадмиевые батареи

Никель-кадмиевые батареи

для портативного использования являются герметичными и обычно имеют конструкцию из спеченных пластин, а элементы имеют цилиндрический формат.Эти никель-кадмиевые батареи используются в бытовом электронном оборудовании, таком как портативные беспроводные инструменты, игрушки и другие бытовые беспроводные устройства.

Размещение на рынке портативных никель-кадмиевых аккумуляторов ограничено в Европейском Союзе с 2008 года для большинства применений с ограниченным числом исключений. Крупнейшее исключение для использования в аккумуляторных электроинструментах было прекращено 31 декабря 2016 года.

(б) Промышленные никель-кадмиевые батареи

Благодаря своим уникальным преимуществам, промышленные никель-кадмиевые батареи являются эталонной технологией как для гражданских (Airbus, Boeing, Embraer и др.), Так и для военных самолетов, где они используются для обеспечения резервного питания авиационных систем, когда основной источник питания источник выходит из строя, а также запускать двигатели на земле.

Промышленные никель-кадмиевые аккумуляторные батареи

также широко используются в качестве резервного источника питания на железных дорогах и в подземных метрополитенах для аварийного торможения, освещения автобусов, отопления и кондиционирования воздуха, связи водителя с пассажиром, а также для запуска локомотивов и резервного питания на рельсах. сигнальные и сигнальные огни.

Другие области применения включают резервное питание для крупных промышленных активов, таких как атомные электростанции, сталелитейные заводы, морские платформы для разведки и добычи нефти, нефтеперерабатывающие заводы, системы аварийного освещения и сигнализации, а также в навигационных средствах, таких как маяки и буи, и другие применения, в которых требуются те же характеристики, в которых непревзойденная надежность обычно является наивысшей.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *