8-3842-33-85-00 - магазин жидких обоев

г. Кемерово, Рынок "Привоз" бокс №1

Изоляция кабеля – ГОСТ 31996-2012 Кабели силовые с пластмассовой изоляцией на номинальное напряжение 0,66; 1 и 3 кВ. Общие технические условия

Содержание

Типы изоляции силовых кабелей

Определимся с понятиями: изоляция — это диэлектрик, которым покрывается каждая токоведущая жила. Оболочка — это дополнительная защита поверх изолированных жил для механической защиты кабеля. Оболочку рассмотрим отдельно, сейчас речь об изоляции.

В России используются два основных типа изоляции кабелей: бумажная маслопропитанная и пластмассовая. Первый тип устарел и постепенно заменяется на второй. Считается, что бумажная изоляция лучше подходит для прокладки кабеля в агрессивных условиях среды.

Бумажная маслопропитанная изоляция

Чтобы провод сгибался без повреждения изоляции, бумажную ленту наматывают на жилу с перекрытием 20—30%, чтобы она прилегала к жиле и предыдущему слою с зазором. Зазоры между витками в соседних лентах не должны совпадать, иначе ухудшатся электрические характеристики. Бумага для изоляции делается из сульфатной целлюлозы и пропитывается жидким диэлектриком — маслоканифольным составом.

Бывают кабели для прокладки на вертикальных и крутонаклонных трассах. Их бумажную изоляцию пропитывают нетекучим составом с добавлением церезина. Церезин — воскообразное вещество, образующее с кабельным маслом однородную смесь.

Пластмассовая изоляция

Жилы покрываются пластмассовой изоляцией с помощью экструзии. Это более технологично, чем мотать бумагу, а потом пропитывать и сушить. Пластмассовая изоляция лучше бумажной маслопропитанной по всем параметрам:

— большая пропускная способность кабеля за счет увеличения длительно допустимой температуры жилы,

— высокий ток термической устойчивости при коротком замыкании,

— меньше вес и диаметр,

— можно прокладывать кабель на морозе без предварительного подогрева,

— нет ограничений по разнице уровней на трассе (ничего никуда не стечет),

— монтаж проще из-за отсутствия жидких компонентов.

Есть четыре вида пластмассовой изоляции.

ПВХ пластикат

Смесь поливинилхлоридной смолы с пластификаторами и стабилизаторами. Пластификаторы с добавлением антиоксидантов делают изоляцию гибкой и замедляют деградацию удельного электрического сопротивления.

ПВХ не лучший изолятор, зато устойчив к агрессивным средам. Не поддерживает горения, но горит. Начинает разлагаться при 140° C и выделяет токсичный газ хлороводород. Свойства ПВХ ухудшаются от света, и пигментные добавки не вполне спасают.

ПВХ пластикат — самый популярный вид пластмассовой изоляции кабелей.

Сшитый полиэтилен (СПЭ)

По свойствам примерно то же, что ПВХ пластикат. Изоляция из сшитого полиэтилена применяется только на одножильных и трехжильных кабелях. Преимущество СПЭ перед ПВХ: меньшая толщина диэлектрика при равном рабочем напряжении на линии.

При использовании СПЭ в конструкцию кабеля включаются два полупроводниковых слоя: по жиле и по изоляции. Это нужно для выравнивания напряженности электрического поля и электромагнитной совместимости кабеля с внешними электрическими цепями.

Сшитый полиэтилен СПЭ отличается от обычного термопластичного ПЭ сохранением механических и электрических свойств при приближении к температуре плавления. Причина: сшивка полимерных нитей на молекулярном уровне с помощью реактивов или радиации. Это как производство термоусадочной трубки, но без раздувки.

Резина

Отличается повышенной гибкостью, влагозащитой и стоимостью, делается из каучуков. Силовые кабели в резиновой изоляции соединяют подвижные элементы с электросетью.

Кабель в резиновой изоляции имеет избыточный диаметр из-за округлой формы. Резина боится света и со временем теряет эластичность.

Помимо каучуковой, есть кремнийорганическая резина: кроме гибкости, она обладает повышенной термостойкостью.

Фторопласт

Максимально сильный диэлектрик, стойкий к высоким температурам и агрессивным средам. Фторопластовая изоляция очень дорогая, поэтому используется либо в жестких условиях эксплуатации, либо для высоковольтных греющих кабелей.

При равных габаритах кабели во фторопластовой изоляции передают большую мощность, чем кабели в СПЭ изоляции, не говоря уж о ПВХ.

Выводы

Кабели с бумажной маслопропитанной изоляцией используются ради совместимости со старыми кабельными линиями и постепенно уступают место более технологичным кабелям с пластмассовой изоляцией.

Самые популярные виды пластмассовой изоляции — поливинилхлорид и сшитый полиэтилен. Резиновая и фторопластовая изоляция используется для специфических условий эксплуатации.

cabel mark

Основные виды изоляции кабелей и проводов: обзор, плюсы и минусы

Совсем недавно мы рассматривали, маркировку кабелей и проводов, однако у наших подписчиков осталось еще множество серьезных вопросов по поводу изоляции. Поэтому в этой статье мы решили подробно рассказать о том, какие виды изоляции кабелей и проводов существуют на данный момент. Рассмотрим самые популярные изоляционные материалы и выделим самые популярные.

Типы изоляции проводников

Изначально вы должны понимать, что изоляция подбирается к каждому проводнику индивидуально, исходя из его конструктивных особенностей и сетевого напряжения, при котором он будет работать. Исходя из этого, можно выделить следующее:

  1. Облачные проводники, которые используются в сети не более 700 Вольт. Они предназначены для домашнего использования в однофазной или трехфазной сети. То есть, 220 и 380 Вольт соответственно.
  2. Безоблачные кабеля, которые используются в сетях, как и в первом случае.
  3. Для проводников, которые работают при постоянном токе 700-1000 Вольт и переменном напряжении 220 и 400 Вольт.
  4. Для проводников с напряжением до 3600 Вольт. Переменный ток в этом случает от 400 до 1800 Вольт.
  5. Также стоит выделить провода, которые используются при напряжении 1000-6000 Вольт, с переменным током 400-1800 Вольт.

Здесь также стоит учитывать:

  • Условия эксплуатации.
  • Технические характеристики и иные параметры.
  • Сечение кабеля.
  • Количество жил.

Виды изоляции для проводов

Как вы понимаете, к каждому проводнику изоляция подбирается индивидуально. Сейчас выделяют следующие виды изоляции проводов и кабелей:

Резиновая изоляция

Она может быть изготовлена из природной резины или синтетического происхождения. Преимущества такой изоляции заключаются в том, что провод получает высокую гибкость, что позволяет использовать его практически в любых условиях. Однако такая изоляция не считается долговечной, так как оплетка через определенное время теряет свойства. Такую изоляцию получил популярный кабель КГ.

ПВХ

ПВХ изоляция для проводов считается достаточно популярной. Следует выделить несколько преимуществ:

  • Низкая цена во время производства.
  • Высокая эластичность, которая сохраняется при низких температурах.
  • Термостойкость.
  • Хорошие защитные свойства.

Однако можно выделить и несколько недостатков:

  • Со временем теряются свойства.
  • Также со временем снижается химическая стойкость материала.

Бумажная изоляция

В современной кабельной продукции такая изоляция используется крайне редко, это связанно с тем, что ее пропускная способность составляет не более 35 кВ. Однако если бумажная используется в силовых кабелях, тогда производители используют специальную пропитку, которая включает в себя масло, канифоль и воск.

Если говорить за недостатки, то они существенны, так как бумага не может переносить внешнее воздействие. Соответственно проводники с такой изоляцией можно встретить редко, также их устанавливать можно только в сухих помещениях.

Фторопластовая изоляция

Фторопластовая изоляция проводов и кабелей считается одной из самых надежных. Однако процедура применения данной изоляции считается достаточно сложной. Ведь сначала фторопласт наматывается на кабельные жилы, затем его начинают запекать при высоких температурах. В результате получается изоляция, которую сложно повредить.

Также читайте:

Провод СИП: основные характеристики.

Как правильно выбрать изоляцию и оболочку силового кабеля?

Потребительский и профессиональный рынок кабельной продукции впечатляет своим разнообразием, огромным количеством позиций, разновидностей проводов, их исполнений и макро-размеров…


01.jpgПотребительский и профессиональный рынок кабельной продукции впечатляет своим разнообразием, огромным количеством позиций, разновидностей проводов, их исполнений и макро-размеров. Одинаковые марки от разных производителей, большой выбор сечений, рабочих токов, сопротивления, температур эксплуатации и прочих технических параметров, разнообразие конструкций, типов изоляции и защитных оболочек, наличие брони и/или экрана – это лишь малая часть критериев, разницу между которыми следует понимать потребителю, выбирая необходимый кабель.

На самом деле, все не настолько «страшно», как кажется на первый взгляд. Регламенты и стандарты, разработанные профессионалами, обычно дают четкую инструкцию, какой тип кабеля, в каком диапазоне сечений и с каким видом изоляции необходимо искать марку под конкретный проект. Кроме того, в открытом доступе в сети достаточно обзорных материалов по данной тематике.

Материал посвящен проблеме выбора изоляционного покрытия, которое наилучшим образом отвечает требованиям поставленного техзадания. Мы также постараемся максимально доступно объяснить, какая изоляция лучше, почему важно хорошее качество изоляционного покрытия, и дать короткий обзор марок проводных изделий.

Понятие и разновидности изоляции

02.jpgЧто же представляет из себя изоляционное покрытие кабеля и зачем уделять ему столько внимания? Изоляция – это один или несколько слоев специального диэлектрического материала, который покрывает кабельные жилы и создает эффект электрического разъединения, т.е. препятствует протеканию электротока между парой проводников. Основная задача изолятора – не допустить «прорыва» напряжения электросети наружу, за пределы определенной жилы, предотвратить электроудар, короткое замыкание или даже возгорание изделия. Одна из главных характеристик хорошей изоляции – высокая электрическая и механическая прочность, большое удельное объёмное сопротивление, высокий показатель пробивного напряжения, минимальная диэлектрическая проницаемость, а также способность отслужить свой нормативный срок без образования естественных дефектов и деформаций.

Изоляционное покрытие наиболее часто классифицирует по материалу, из которого оно изготовлено:

· 03.jpg

Полиэтилен (ПЭТ) – является отличным диэлектриком, поэтому применяется для изолирования разнообразных проводных марок, в т. ч. для высоковольтных кабелей. ПЭТ-изоляция способна эффективно выполнять свои функции в довольно широком температурном диапазоне, отличается хорошей стойкостью к повреждаемости, к воздействию кислот, щелочей и влаги, с ней легко работать в отношении монтажа. Полиэтиленовое изоляционное покрытие достаточно дружелюбно с точки зрения экологии, поэтому соответствующие марки можно прокладывать на любых объектах. Более «продвинутая версия», изоляция из сшитого полиэтилена, обладает высокой степенью плавления (до 140 °C), неплохой эластичностью и устойчивостью к растрескиванию.

04.jpg· Поливинилхлорид (ПВХ, ПВХ-пластикат) – это один из наиболее популярных видов изоляционного покрытия, которое широко применяется для прокладки, в первую очередь, внутри помещений. ПВХ не «дружит» с холодом и воздействием ультрафиолета, поэтому на открытом пространстве обычно монтируется в трубах. При этом существуют отдельные исполнения кабелей с ПВХ-покрытием, которые легко выдерживают до -60 °C. Добавление к пластикату различных компонентов (карбонат, тальк, каолин или кальций) повышает их эластичность и устойчивость к низким температурам. ПВХ-изоляция имеет превосходную пропускную способность, высокий уровень допустимых токов и низкий показатель потерь, экологически безвредна, может применяться на сложных трассах, отлично переносит механические воздействия и неплохо справляется с возгоранием. Важным достоинством ПВХ-пластиката является его относительно низкая себестоимость.

· 05.jpgРезина – данный изоляционный материал производится из натуральных или синтетических каучуков и отличается превосходными характеристиками гибкости и минимальным уровнем гигроскопичности, т.е. способности поглощать влагу.

 

06.jpg

Именно гибкость кабелей с изоляцией из резины стала их «фишкой», которая существенно облегчила любой вид нестационарного подключения подвижного механизма или инструмента к энергоисточнику. Серьезным недостатком резинового покрытия является его относительная недолговечность, постепенная потеря эластичности и сравнительно высокая стоимость.

К одной из разновидностей данного типа изоляции относится 07.jpgкремнийорганическая резина, которая является полимером на основе чередующихся частиц кислорода и кремния, потерявшего способность к окислению. Такой химический состав кремнийорганики способствует ее высокой сопротивляемости нагреву, поэтому она очень популярна как изолятор для термостойких кабелей. Эластичность и пластичность кремнийорганической резины обеспечивается присутствием атомов углеродной группы.

· 08.jpgБумага – в основе данного изоляционного покрытия лежит специальный кабельный бумажный материал из сульфатной целлюлозы, который укладывается большим количеством слоев. Бумажная изоляция долговечна, обладает отличными электрическими характеристиками и доступна по цене. При наличии дополнительной защиты от влаги в виде металлических оболочек или особой пропитки из канифоли, восковых или масляных компонентов, ее можно использовать даже магистральных электросетях с напряжением до 35 кВ. Главный недостаток бумажной изоляции – это ее мягкость, неспособность переносить жесткие механические воздействия.

09.jpg· Стеклослюдинитовый изолятор производится путем склеивания лаком из кремнийорганики 1-го или нескольких листков слюдинитовой бумаги (лент) со специальной стеклосеткой или стеклотканью. Полученный из натуральных минералов стеклослюдинит, нанесенный поверх ПВХ-изоляции, формирует надежный огнезащитный барьер, стойкость к механическим и вибровоздействиям кабелей, которые рассчитаны на токи до 6 кВ.

· 10.jpgФторопласт – это техническое наименование фторсодержащих полимеров, которые прекрасно зарекомендовали себя при конструировании термостойких кабелей, широко применяемых, например, в быту при подключении электрооборудования для бань или саун. При помощи фторопласт-полимеров выполняется первичная обмотка высоковольтных кабелей и проводов для теплых полов. Данный тип изоляции считается одним из наиболее надежных, ведь фторопласты по праву признаны одними из лучших изоляторов электротока. Кроме того, особая технология изготовления, а именно запекание при высоких температурах уже заизолированных кабельных изделий, обеспечивает на выходе предельно крепкий провод, фторопластовая изоляция которого весьма стойка к повреждению, в т.ч. воздействию агрессивных концентрированных кислот и щелочей. Иногда фторопластовый изолятор может дополнительно покрываться или стеклотканью, или другими аналогичными материалами.

11.jpg

· Минералы – окись магния или периклаз применяются в некоторых нагревостойких кабельных марках для создания изоляционного слоя между жилами, которые помещены в оболочки из стали или сплавов, и наружной защитой.

12.jpg

· Полиолефины – это особый тип полимеров, не содержащий галогены, например, хлор, фтор, йод, астат или бром. Галогенная составляющая, присутствуя в кабельной изоляции, способствует ее повышенной негорючести (индекс «нг» в маркировке), но при этом, если возгорание все же состоялось, выделяется в виде высокотоксичного угарного газа CO и хлороводорода HCl. Поэтому в местах с большим скоплением людей рекомендуется применять кабельную продукцию, изолированную безгалогенными композициями («HF», Halogen Free), которая при горении выделяет малое количество дымов без вредных веществ.

В некоторых проводных марках встречается изолятор из лака, полистирола, шелка и асбеста, хотя последний используется все реже, поскольку признан канцерогенным веществом.

Обзор марок с разными типами изоляции

В Таблице представлены основные технические характеристики кабельных марок с различными типами изоляторов.

Марка

Изоляция

Жила

Напря-жение, кВ

Температура

Радиус изгиба, Дн

Срок службы, лет

Прим.

ВПП

ПЭТ

Медь

380/660

-40/+80

10

6

 

ТПП

ПЭВД

Медь

380/660

-50/+60

10

20

 

ПвБбШп

СПЭ

Медь

1000

-50/+50

7,5

30

броня

ВБбШв

ПВХ

Медь

660/1000

-50/+50

7,5

30

броня

АВВБ

ПВХ

Алюминий

1000

 

 

5

 

ППВ

ПВХ

Медь

450/750

-50/+70

10

15

 

АППВ

ПВХ

Алюминий

450/750

-50/+40

10

15

 

ПВС

ПВХ

Медь

380

-25/+40

4

6

 

ВВП

ПВХ

Медь

220

-40/+40

5

6

 

БПВЛ

ПВХ

Медь

250/500

-60/+70

5

10

 

ВВГ

ПВХ

Медь

660/1000

-50/+50

7,5

30

 

АВВГ

ПВХ

Алюминий

660

-50/+50

7,5

30

 

ПВ1

ПВХ

Медь

450/700

-50/+70

10

15

 

NYMнг

ПВХ

Медь

660

-50/+50

4

30

 

РПШ

Резина+
полиамид-ный шелк

Медь

380/660

-40/+60

8

8

 

КГ

Резина

Медь

660

-40/+50

8

4

 

H07RN-F

Резина

Медь

450/750

-40/+50

6

4

 

РКГМ

Кремний-органическая резина (КР)

Медь

660

-60/+180

2

8

 

ПРКС

КР

Медь

660

-60/+180

4

25

 

ПНБС

КР

Медь

660

-60/+150

4

10

 

СКл (ЦСКл)

Бумага

Медь

до 10 кВ

-50/+50

15

30

экран, броня

СБл

Бумага

Медь

до 10 кВ

-50/+50

15

30

экран, броня

СБГ (ЦСБГ)

Бумага

Медь

до 10 кВ

-50/+50

15

30

броня

ППГнг-HF

Полиолефины

Медь

660/1000

-30/+50

10

30

HF

КНМСп2С

Периклаз

Сталь

1000

-60/+800

10

20

 

 

Многие проводные марки имеют различное исполнение, которое рассчитано, к примеру, на их применение в холодных регионах («ХЛ»), самозатухание при пропадании огня «(нг»), длительное воздействие пламени («FR», Fire Resistance), низкое дымовыделение («LS», Low Smoke), минимальный вред для среды («LTx», Low Toxic). Также возможны различные комбинации типов исполнения: FRLS, нг-FRHF, FRHFLTx и прочие.

Подводя итоги, следует сказать, что однозначного ответа на вопрос «какая изоляция лучше» все-таки нет, ведь под каждый проект марка кабеля подбирается достаточно индивидуально, в рамках рекомендаций и требований нормативных документов, а также сложившейся практики.

Не нашли ответа на свой вопрос?
Свяжитесь с нами, и мы предоставим необходимую информацию.

Задать вопрос


виды изоляционных материалов и способы их применения

С проблемой формирования изоляционного покрытия токопроводящих жил можно столкнуться как на предприятиях, так и в быту. Рассмотрим, как правильно и эффективно выполняется изоляция проводов своими руками.

Ситуации, требующие задействования дополнительной изоляции

Изоляция проводов, как правило, необходима после выполнения соединения между отдельными линиями, чтобы обеспечить безопасность от поражения электрическим током. При этом случаются и следующие ситуации, когда понадобится изоляционный материал:

  1. При повреждении отдельного участка защитного слоя кабельной линии. Это позволит не производить замену всего проводника, а только заизолировать нарушенный слой защиты.
  2. При расположении в непосредственной близости от корпуса электрооборудования не защищенных токопроводящих жил.
  3. Для маркировки проводов одного цвета.
  4. Для жгутования отдельно лежащих тонких проводов.
Изоляция мест соединения электрических проводовИзоляция мест соединения электрических проводовк содержанию ↑

Разновидности изоляционных материалов и сфера их применения

В зависимости от планируемых условий эксплуатации и типа соединения проводников могут использоваться различные виды изоляции. Рассмотрим наиболее популярные варианты.

Изоляционная лента

Изолента является самым доступным и популярным способом защиты токопроводящих жил. Сфера ее применения напрямую зависит от материала изготовления.

Поливинилхлорид

Лента выпускается с шириной от 10 до 20 мм. Адгезия с защищаемой поверхностью обеспечивается специальным клеящим составом, который нанесен на внутреннюю поверхность ленты. Производители выпускают изделия в различных цветовых гаммах. К положительным основным свойствам ПВХ изоленты относятся:

  • прочность;
  • адгезия со многими типами поверхностей;
  • способность выдерживания значительных температур — до 120 градусов Цельсия;
  • выдерживание повышенного значения напряжения;
  • эластичность;
  • высокий уровень пожарной безопасности;
  • противодействие внешним факторам: влага, щелочь, кислота.
Изоляция провода ПВХ лентойИзоляция провода ПВХ лентой

Из недостатков выделяется потеря полезных свойств при использовании в отрицательных температурах.

Изоляционная лента ПВХ получила широкое применение в электротехнической отрасли, а также в быту. Изолента для проводки с уровнем напряжения до 1000 Вольт может прослужить длительный период времени.

Обратите внимание! При необходимости допускается выполнять изоляцию высоковольтных кабелей. Согласно рекомендуемым эксплуатационным показателям, один слой способен обеспечить безопасность на уровень напряжения 660 В.

Помимо указанных случаев, материал активно используется для ремонта трубопроводов, бытовой техники и упаковки товаров.

Виды изоляционной ленты из поливинилхлоридаВиды изоляционной ленты из поливинилхлоридак содержанию ↑

Хлопчатобумажная

Основу изделия составляет хлопчатобумажный материал с добавлением резины, на внутреннюю часть которого также наносится клеящий раствор. Некоторые производители в качестве базового материала применяют стекловолокно. Выпуск лент осуществляется с шириной от 15 до 50 мм. Из положительных характеристик выделяются:

  • высокая прочность;
  • повышенная износостойкость;
  • термическая устойчивость;
  • низкая стоимость.

К отрицательным моментам хлопчатобумажного изоляционного материала относят:

  • вероятность воспламенения из-за перегрева;
  • впитывание жидкости.
Тканевая изолента TESAТканевая изолента TESA

Основной сферой применения ХБ изоленты является защита электропроводки с уровнем напряжения до 1000 Вольт. Ее рекомендуется использовать исключительно в закрытых и сухих помещениях. В электроустановках большего напряжения ее применяют в качестве дополнительного средства для повышения показателя морозостойкости в месте соединения проводников.

к содержанию ↑

Термические усадочные трубки

Термоусадка является современным и более надежным способом изоляции проводников. Термоусадочные трубки выпускаются различного диаметра и длины (до одного метра). Они не разборные и не универсальные, поэтому должны подбираться под конкретный диаметр проводника. В процессе монтажа происходит сужение исходного сечения практически в два раза. Это обеспечивает надежную фиксацию с защищаемой поверхностью.

Для изготовления термотрубки используются специальные полимеры: полиэтилен, силикон и так далее. Для повышения показателей сцепки с токопроводящими жилами дополнительно используется термоклей во внутренней полости трубки. При этом они могут легко эксплуатироваться в различных климатических условиях, выдерживая воздействие агрессивных сред.

Термоусадочные трубки для изоляции проводовТермоусадочные трубки для изоляции проводов

Рабочий диапазон температур стандартных термоусадок находится в пределах от — 50 до + 125⁰С, но выпускаются изделия способные выдерживать до 260⁰С. Благодаря использованию специальных полимеров, производители выпускают следующие виды термоусадок:

  • термостойкая;
  • с повышенной прочностью;
  • полупроводниковые;
  • гофрированные;
  • флуоресцентные.

Сфера применения термотрубок очень обширна. С их помощью может быть восстановлена изоляция кабеля с величиной напряжения до 110 кВ.

Применение термоусадочной трубки

к содержанию ↑

Жидкое изоляционное покрытие

Жидкая изоляция для проводов используется для восстановления защитного слоя токопроводящих жил, которые эксплуатируются в условиях повышенной влажности или в непосредственном соприкосновении с водой. В качестве изоляционного материала применяется полиуретановый компаунд. Он заливается в заранее подготовленную муфту через специальный бандаж. При этом по концам муфты устанавливаются резиновые уплотнители.

Жидкая электроизоляция для проводовЖидкая электроизоляция для проводовк содержанию ↑

Клеммы для изолирования мест соединения проводки

Изделия представляют собой контактную часть, которая помещена в диэлектрический корпус. Выпускаются в виде колодок и колпачков. Фиксация токопроводящих жил может выполняться винтами или зажимами. Данный вариант отлично подойдет для формирования контактных соединений в распределительной коробке своими руками.

Обжимная клемма с изоляциейОбжимная клемма с изоляцией

К недостаткам клеммного соединения относят:

  • увеличение объемов проводки в месте контакта;
  • незащищенность от воздействия влаги.
к содержанию ↑

Предварительный этап работ

Прежде чем начать самостоятельно изолировать провода, рекомендуется тщательно ознакомиться с техникой безопасности и правилами выполнения работ. Указанную процедуру можно проводить исключительно при обесточенной электросети. При этом отключенный автомат не является гарантией безопасности. Непосредственно перед началом работ следует проверить отсутствие напряжения специальным указателем. В дальнейшем понадобится очистить обрабатываемую поверхность от грязи, пыли и так далее.

Обесточивание электросети перед началом работОбесточивание электросети перед началом работк содержанию ↑

Подготовка обрабатываемой поверхности

От качества проведения подготовительных мероприятий в месте будущего нанесения изоляционного слоя на проводник зависит не только срок службы, но и безопасность эксплуатации. Для удаления поврежденной изоляции лучше использовать специализированный инструмент. Это позволит не повредить защитный лак и непосредственно поверхность токопроводящей жилы, но его стоимость достаточно высока. Для осуществления разовых работ приобретать такой инструмент нецелесообразно.

Далее представлены наиболее доступные способы зачистки изоляции в домашних условиях:

  1. Для очистки защитного покрытия старой проводки рекомендуется воспользоваться паяльником. После прогрева инструмента осуществляется нагрев требуемой поверхности до оплавления изоляционной оболочки. В дальнейшем она снимается с использованием перчаток.
  2. Удаление изоляции с помощью ножа с острым лезвием (рекомендуется канцелярский). Нож необходимо вести параллельно токопроводящим жилам, не допуская поднятия в вертикальное положение. После проделывания продольного отверстия изоляция аккуратно отводится и срезается.
Зачистка проводов от изоляцииЗачистка проводов от изоляциик содержанию ↑

Процесс использования изоленты для формирования защитного покрытия

Порядок нанесения защитного слоя изоленты зависит от типа обрабатываемой поверхности. Если планируется заизолировать место соединения двух токопроводящих жил, то рекомендуется придерживаться следующей последовательности:

  1. Выполнить скрутку и спаять.
  2. Изолента наносится под углом с захватыванием небольшой части основной изоляции по направлению к концу скрутки.
  3. На следующем этапе понадобится аккуратно загнуть скрутку, чтобы она расположилась параллельно основному защитному покрытию.
  4. Наносится еще один слой изоленты, но уже по направлению к заводской изоляции.
  5. Усилием руки прижимается нанесенная изолента, и срезаются излишки материала.

Изоляция скрутки изолентой

Для восстановления защитного покрытия на цельном проводнике рекомендуется выполнить следующие действия:

  1. Производится укладка ленты под углом с захватом части основной изоляции по направлению к другому неповрежденному участку.
  2. Далее изолирующий материал наносится в обратном направлении.
  3. Изолента тщательно прижимается руками с последующим удалением лишнего материала.
к содержанию ↑

Порядок формирования изоляционного покрытия посредством термоусадки

Процесс монтажа термотрубки начинается с надевания ее на один из концов соединяемых проводов. Только после этого осуществляется их скрутка. Рекомендуется подобрать размер термоусадки таким образом, чтобы была охвачена часть основной изоляции приблизительно на один сантиметр.

В дальнейшем изоляционная трубка натягивается на соединенный участок и нагревается. Для этого можно воспользоваться строительным феном или зажигалкой. Нагрев рекомендуется вести от краев к центру.

Обратите внимание! Нельзя допускать излишнего перегрева термоусадки, в противном случае она потеряет свои изоляционные свойства.

к содержанию ↑

Общее представление о сопротивлении изоляции

Определяющим показателем, влияющим на образование токов утечки и формирования однофазных или междуфазных коротких замыканий проводников, является сопротивление изоляции. Оно показывает, насколько токопроводящая жила изолирована от земли и соседних проводников.

В зависимости от используемой марки кабеля предусмотрены нормативные значения по сопротивлению. Они могут варьироваться, исходя из конкретных климатических условий. Для фиксации показаний используется мегомметр. С целью выявления слабых мест периодически осуществляется контроль указанного значения. Сроки проверки устанавливаются в соответствии с ПУЭ. Внеочередные испытания изоляции осуществляются в следующих случаях:

  • при вводе в эксплуатацию;
  • после проведения ремонтных работ;
  • в случае попадания на защитный слой воды или при его перегреве.
Измерение сопротивления изоляцииИзмерение сопротивления изоляции

Для качественного формирования защитного покрытия токопроводящих жил рекомендуется использовать соответствующие виды изоляционного материала. При этом обязательно соблюдать правила техники безопасности. Для кратковременной изоляции проводников можно воспользоваться скотчем.

Изоляция проводов: виды изоляционных материалов и способы их применения

Изоляция кабеля — статьи по кабельной продукции

Изоляция кабеля должна иметь электрическую прочность, исключающую возможность электрического пробоя при напряжении, на которое рассчитан кабель. Для изолирования жил кабелей между собой и от наружных металлических оболочек применяют бумажную, пластмассовую и резиновую изоляцию.

Бумажная пропитанная изоляция жил кабелей имеет хорошие электрические характеристики, продолжительный срок службы, сравнительно высокую допустимую температуру и невысокую стоимость, поэтому находит наибольшее применение. К недостаткам следует отнести гигроскопичность, которая обусловливает необходимость тщательного изготовления и полной герметичности оболочек и муфт кабелей.

Из многослойной упрочненной кабельной бумаги на основе сульфатной целлюлозы марки КМП-120 изготовляют изоляцию для силовых кабелей напряжением до 35 кВ. Можно изготовлять изоляцию из двухслойной бумаги марок К-080, К-120, К-170 или многослойной — КМ-120, КМ-140 и КМ-170. Толщина бумаги соответственно составляет 80, 120, 140 и 170 мкм.

Жилы обматывают бумажными непропитанными лентами. Наиболее распространена обмотка с зазором, которая позволяет в некоторых пределах изгибать кабель без опасности повреждения бумажной изоляции. Во избежание ухудшения электрических характеристик изоляции зазоры между витками соседних лент, расположенных сверху (по вертикали), не должны совпадать. При наложении большого количества лент избежать совпадений зазоров не удается, поэтому число совпадений нормируют. Допускается не более трех совпадений лент бумаги и изоляции «жила — жила» или «жила — оболочка (экран)» в кабелях напряжением 6 кВ, не более четырех для кабелей 10 кВ, не более шести для кабелей 35 кВ.

Бумажная изоляция должна накладываться плотно, без складок и морщин, наличие которых приводит к образованию пустот, воздушных включений, снижающих надежность кабелей. Толщина изоляционного слоя на силовые кабели нормируется ГОСТом и зависит от номинального напряжения и сечения жил кабеля. Для увеличения электрической прочности на поясную изоляцию кабелей напряжением 6 и 10 кВ, на жилы и поверх изоляции кабелей напряжением 20 и 35 кВ накладывают экран из электропроводящей бумаги. Цифровое обозначение или отличительную расцветку имеют в многожильных кабелях верхние ленты изоляции жил. При цифровом обозначении на верхнюю ленту первой жилы наносят цифру 1, второй — 2, третьей — 3, четвертой — 4. При отличительной расцветке номеру 1 соответствует белый или желтый, номеру 2 — синий или зеленый, номеру 3 — красный или малиновый, номеру 4 — коричневый или черный цвета.

Изолированные жилы многожильных кабелей скручивают, заполняя промежутки между ними изоляционными материалами, до получения круглой формы. На скрученные изолированные жилы накладывают поясную изоляцию бумажными лентами определенной толщины. Бумажную изоляцию кабелей вначале сушат, затем пропитывают маслоканифольными составами: МП-1 для кабелей напряжением 1—10 кВ и МП-2 — 20—35 кВ. Пропиткой достигается увеличение электрической прочности бумажной изоляции.

Пластмассовую изоляцию применяют для силовых кабелей. Ее изготовляют из полиэтилена или поливинилхлорида (ПВХ), Хорошими механическими свойствами в широком интервале температур, стойкостью к действию кислот, щелочей, влаги и высокими электроизоляционными характеристиками обладает полиэтилен. В зависимости от способа получения полиэтилена различают полиэтилен низкой и высокой плотности. Полиэтилен высокой плотности имеет большие по сравнению с полиэтиленом низкой плотности температуру плавления и механическую прочность.

Полиэтилен низкой плотности размягчается при температуре около 105°С, высокой плотности — 140°С. Введение в полиэтилен органических перекисей и последующая вулканизация значительно повышают его температуру плавления и стойкость к растрескиванию. Вулканизирующийся полиэтилен незначительно деформируется при 150°С. Для получения самозатухающего полиэтилена вводят специальные добавки.

Для электропроводящих экранов кабелей с полиэтиленовой изоляцией в полиэтилен добавляют полиизобутилен, ацетиленовую сажу и стеариновую кислоту. Твердый продукт полимеризации — поливинилхлорид (ПВХ) — не распространяет горения. Для повышения эластичности и морозостойкости в него добавляют пластификаторы — каолин, тальк, карбонат кальция, для получения цветного ПВХ вводят окрашивающие добавки. ПВХ стареет под воздействием температуры, солнечной радиации и т.п. за счет улетучивания пластификатора (происходит снижение эластичности и холодостойкости).

Резиновая изоляция состоит из смеси каучука (натурального или синтетического), наполнителя, мягчителя, ускорителя вулканизации, противостарителя, красителя и др. Для изоляции кабелей применяют резину РТИ-1, имеющую в составе 35 % каучука.

Плюсы резиновой изоляции — гибкость и практически полная негигроскопичность. Недостатки — более высокая стоимость и низкая рабочая температура жилы (65°С) по сравнению с другими видами изоляции, что снижает допустимую нагрузку на кабель.

Со временем у изоляционных резин наблюдается значительное снижение эластичности и изменение других физико-механических свойств. Старение резиновой изоляции происходит под воздействием различных факторов и является в основном следствием окислительной деструкции (разрушения) содержащегося в резине каучука. С целью защиты изоляции жил от воздействия света, влаги, различных химических веществ, а также для предохранения ее от механических повреждений кабели снабжают оболочками.

Лучшими материалами для изготовления оболочек кабелей в отношении герметичности и влагонепроницаемости, гибкости и теплостойкости являются металлы — свинец и алюминий. Кабели с невлагоемкой (пластмассовой или резиновой) изоляцией не нуждаются в металлической оболочке, поэтому их обычно изготовляют в пластмассовой или резиновой оболочке. Толщина оболочки нормируется и зависит от материала, из которого она изготовлена, диаметра кабеля и условий эксплуатации.

Свинцовые оболочки изготовляют из свинца марки С-3 (чистого свинца не менее 99,95 %). Свинец принадлежит к числу весьма тяжелых металлов (плотность 11340 кг/м3). Температура плавления — 327,4°С. Свинец обладает малой механической прочностью и значительной текучестью, что приходится учитывать при вертикальных прокладках кабелей в голой свинцовой оболочке. При повышении температуры текучесть свинца увеличивается. Нормальный электрохимический потенциал свинца равен -0,13 В, поэтому он обладает малой химической активностью и высокой коррозионной стойкостью.

Минус свинцовых оболочек — малая стойкость против вибрационных нагрузок, особенно при повышенной температуре. Повышения вибростойкости и механической прочности достигают введением в свинец присадки из сурьмы. Свинцовая оболочка кабелей без защитных покровов изготовляется из свинцово-сурьмянистых сплавов марок ССуМ, ССуМТ. Свинцовые оболочки не должны иметь рисок, царапин и вмятин, выводящих их за пределы минимальных допусков по толщине.

Алюминиевые оболочки изготовляют методом выпрессовывания из алюминия А-5 чистотой не ниже 99,97 %. Плотность алюминия — 2700 кг/м3, предел прочности — 39,3—49,1 МПа. Алюминиевые оболочки в 2—2,5 раза прочнее и в 4 раза легче, чем свинцовые, имеют повышенную стойкость к вибрационным нагрузкам и обладают высокими экранирующими свойствами. Недостатки алюминиевых оболочек — большие технологические трудности наложения их на кабель и малая стойкость к электрохимической коррозии, что объясняется высоким нормальным отрицательным потенциалом алюминия (-1,67 В).

Коррозия сводится к вытеснению из среды, с которой соприкасается алюминий, ионов водорода и переходу самого алюминия в виде ионов в раствор. Поэтому кабели с алюминиевыми оболочками защищают против гниения особо стойкими покровами, не пропускающими к оболочке влагу.

Пластмассовые оболочки изготавливают из шлангового ПВХ-пластиката или полиэтилена. Пластмассовые оболочки сочетают в себе легкость, гибкость и вибростойкость, но через пластмассу постепенно диффундируют водяные пары, что приводит к падению сопротивления изоляции кабелей. Поэтому их применяют в кабелях с негигроскопичной изоляцией из полиэтилена, ПВХ и др. Шланговый пластикат отличается от изоляционного подбором пластификаторов и стабилизаторов, обеспечивающих большую стойкость против светового старения. Для оболочек кабелей применяют ПВХ-пластикат марки 0-40. Оболочки кабелей из ПВХ-пластиката при температуре ниже допустимой становятся жесткими и при ударе могут разрушаться.

Хорошая механическая прочность ПВХ-пластиката позволяет широко применять кабели в оболочке без защитных покровов. Он не распространяет горения, он влаго- и маслостоек, стоек к электрической и химической коррозии. Кабели в такой оболочке просты в производстве и удобны в монтаже.

Резиновые оболочки изготавливают из маслостойкой резины РШН-2, не распространяющей горения. Резиновые оболочки обладают высокой стойкостью к растягивающим, ударным и крутящим нагрузкам.

Защитные покровы состоят из подушки, брони и наружного покрова и предназначены для защиты кабелей от механических повреждений и коррозии. В обозначение марки кабеля, не имеющего защитного покрова, добавляется буква «Г».

Подушки кабеля представляют собой концентрические слои волокнистых материалов и битумного состава или битума поверх оболочки, предназначаются для предохранения оболочек кабеля от повреждения лентами или проволоками брони и защиты ее от коррозии и не имеют обозначения. Усиленную подушку с дополнительной обмоткой двумя пластмассовыми лентами, обеспечивающую защиту от коррозии и блуждающих токов, маркируют буквой «л». Для повышения стойкости против коррозии подушку изготовляют с двумя слоями пластмассовых лент и маркируют цифрой и буквой — «2л». С целью повышения коррозионной и влагостойкости подушки поверх лент из ПВХ-пластиката (и другого равноценного материала) накладывают слой выпрессованного полиэтилена или ПВХ-пластиката. В маркировке этот тип подушки обозначают буквами «п» (полиэтилен) и «в» (ПВХ-пластикат). Защитные покровы без подушки маркируют буквой «б». Минимальная толщина подушки зависит от конструкции, диаметра кабеля и составляет 1,5—3,4 мм.

Броня служит для защиты кабелей от механических повреждений. Для кабелей, не подвергающихся в процессе эксплуатации растягивающим усилиям, применяют ленточную броню, которая состоит из двух стальных лент толщиной от 0,3 до 0,8 мм (в зависимости от диаметра кабеля по оболочке) и накладывается так, чтобы верхняя лента перекрывала зазоры между витками нижней ленты. Для кабелей, которые подвергаются растягивающим усилиям, применяют броню из стальных оцинкованных плоских или круглых проволок. Толщина брони из стальных оцинкованных плоских проволок составляет 1,5—1,7 мм, диаметр круглых проволок — 4—6 мм.

Наружный покров, в который входит слой битумного состава или битума, пропитанная пряжа и покрытия, предохраняющие витки кабеля от слипания, в маркировке обозначения не имеет. Покров с негорючим элементом в маркировке кабеля имеет букву «Н». С выпрессованным полиэтиленовым защитным шлангом покровы имеют обозначение «Шп», а с ПВХ-шлангом — «Шв». Минимальная толщина наружного покрова зависит от диаметра кабеля и составляет 1,9-3 мм.


Какую изоляцию проводов можно использовать, и как это правильно сделать

Хотя с каждым днем появляется все больше беспроводных устройств, основным средством передачи электрического тока по-прежнему остаются провода.
При производстве проводов и кабелей используются различные виды изоляции. Каждый вид изоляции проводов определяет область применения тех или иных кабельных изделий.
В процессе монтажа проводов или кабелей появляется необходимость в изоляции мест их соединения или подключения к электроприборам. Каким же образом это можно сделать?

Ранее для изоляции кабелей применяли бумагу, но сейчас, при огромном количестве современных материалов ее используют крайне редко. Бумагу наматывали несколькими слоями, пропитывая маслом и канифолью. Это помогало противостоять влиянию влаги.
В производственных условиях делают надежную изоляцию из фторопласта. Ленты фторопласта наматывают на провода и запекают. Образуется оболочка, которая не боится не только химического или температурного, но и механического воздействия.

ПВХ изоляция

ПВХ (поливинилхлорид) также называют виниловая изоляция. Поливинилхлорид устойчив к действию щелочей и кислот, не проводит ток, не растворяется в воде, поэтому находит широкое применение при изготовлении изоляционных материалов. Применяется для изготовления изоляции проводов и кабелей. Так же изготавливают ПВХ изоленту, для изоляции соединения проводов.
Одно из преимуществ ПВХ изоляции – ее дешевизна. Полимерная изоляция довольно эластична и устойчива к перепадам температур, не горит на воздухе. При производстве ПВХ материалов могут добавлять пластификаторы, они несколько ухудшают изоляционные свойства и стойкость к химикатам, но увеличивают эластичность и устойчивость к воздействию ультрафиолетовых лучей.


Если в соединительном кабеле используется виниловая изоляция, покрывающая провода, то кабель обозначается аббревиатурой ПВС. Он может состоять из 2-5 алюминиевых или медных жил. Оболочка бывает виниловая или резиновая.
Срок службы ПВС кабелей превышает 6 лет. В течение всего этого времени они не требуют замены. Они устойчивы к коррозии и плесени, выдерживают морозы до -40° и жару до +40°. Их рабочее сопротивление составляет на 1 км около 270 Ом.
Кабели с ПВХ оболочкой и алюминиевыми жилами применяют в городских электрических сетях, для подачи электричества на производстве и в жилых многоквартирных домах. ПВС кабели с медными жилами получили распространения при подключении к сети практически всех бытовых приборов и другой техники малой мощности, их используют для электропроводки в частных домах и квартирах.

Применение резиновой изоляции

В промышленных отраслях для изоляции кабелей часто применяется резиновая оболочка. К ее положительным качествам относят:

  • Влагостойкость.
  • Эластичность.
  • Высокое сопротивление.
  • Устойчивость к высоким температурам.

Резиновая изоляция производится на основе натуральных и синтетических материалов. Качественная синтетическая оплетка обладает лучшими показателями — дольше стареет, выдерживает воздействие агрессивных химических веществ и отрицательных температур. Резина легко гнется, поэтому провода можно уложить в любых условиях. Но с течением времени резиновая изоляция стареет, трескается и начинает пропускать ток. В условиях высоких температур для изоляции рекомендуется применять вулканизированную резину. Кабели с резиновой изоляцией чаще всего применяют там, где требуется гибкость кабеля. Это питающие кабели кранов, спуски на пульты управления кран-балок. Подключение сварочных трансформаторов, как со стороны питания, так и со стороны низкого напряжения на «держак» электрода и нулевой провод.

Способы изоляции проводов

Изоляция электрических проводов предназначена главным образом для того, чтобы не было утечки токов. По этой причине ее делают из непроводящих (изоляционных) материалов. В зависимости от условий эксплуатации и особенностей конструкции кабелей или проводов выбирают тип изоляции. При электромонтажных работах применяют следующие типы.

  • Изоляционная лента.
  • ПВХ трубка.
  • Термоусадочная трубка.
  • Клеммы.

Изоляционная лента

Не утрачивает своей актуальности изоляция электропроводов изолентой. Изоляционная лента стоит недорого и продается в любом хозяйственном магазине в широком ассортименте.


Наматывать ее надо под углом, начиная от края родной изоляции провода. При параллельном соединении на конце скрутки делают пустую намотку-трубку, сгибают ее и продолжают движение в обратную сторону.


Распространенная ПВХ изоляционная лента при сильном нагревании плавится, но не пропускает влагу. Хлопчатобумажная изоляционная лента, наоборот, выдерживает высокие температуры, но со временем сохнет, а при намокании может отклеиться.


Из ПВХ делают и кембрики – трубки для изоляции проводов и кабелей. Чтобы трубка плотно седела, надо правильно подобрать диаметр трубки.


Как правильно изолировать скрутку проводов лучше посмотреть видеоролик:

Термоусадочные трубки

Термоусадочные трубки делают из полимеров (ПВДФ, ПЭТ, силикон и других). Их применяют преимущественно на низковольтном оборудовании, когда напряжение постоянного тока не превосходит 1 кВ.


Если вы хотите использовать термоусадку для проводов, то надо совершить ряд действий.

  1. Отрезать кусочек термоусадочной трубки, полностью перекрывающий оголенный участок провода (место соединения), с запасом около 2 см.
  2. Затем надо надеть на один из концов соединяемых проводов трубку.
  3. Сделать скрутку проводников.
  4. После этого трубку перемещают на скрутку и нагревают строительным феном.

В результате термоусадки изоляция плотно прижимается к проводам. Если фена нет, то можно использовать зажигалку, аккуратно держа ее на небольшом расстоянии.
Так делают при изоляции скрутки последовательно соединенных проводов. Если соединение проводов параллельное (так называемый пучек проводов), то вначале делают скрутку, а затем надевают трубку.
В большинстве случаев термоусадочную трубку удобнее использовать, чем изоленту. Трубку можно быстро надеть, она более плотно облегает соединение проводов и не разматывается. Но снять ее в случае необходимости уже трудней. Придется только счищать ее или срезать.
На трубках производители ставят маркировку, которая показывает, какую температуру она выдерживает, и для какого напряжения подходит. Выпускают трубки разных диаметров и расцветок, поэтому для различных марок и сечений кабелей всегда есть возможность подобрать соответствующую изоляцию, а цветом произвести маркировку.
Как правильно сделать изоляцию проводов с помощью термоусадочной трубки смотрите видеоролик:

Применение клемм

В качестве изоляции применяют клеммы в диэлектрической оболочке. Клеммы продаются в виде колпачков или колодок, зажимающих провода. Если вы хотите заизолировать провода в распределительной коробке, то выбор клемм – один из вариантов соединения.

Но многое зависит от нагрузки. При высокой нагрузке лучше применять для соединения пайку, а уже сверху надевать изолирующую трубку.
Затягивание алюминиевого провода клеммами с винтами не рекомендуется, поскольку под постоянным давлением алюминий начинает течь. В результате соединение ослабевает, увеличивается сопротивление и происходит короткое замыкание. Если уж вы решили соединить алюминиевые провода клеммами с винтами, то минимум раз в год надо делать ревизию.
Соединение медного и алюминиевого проводов методом скрутки недопустимо. При прохождении тока между металлами возникает электрический потенциал, провода нагреваются, что может вызвать короткое замыкании или того хуже – пожар.
Все же в одном случае скрутку можно сделать – если медный провод покрыть оловянно-свинцовым припоем (залудить). Но чаще для соединения и алюминия и меди применяют клеммные колодки или резьбовой метод (винт, гайка и шайба).

Сопротивление изоляции

Между жилами кабелей и внешней средой могут возникать утечки тока. Одна из задач изоляции – не допустить их появления. Величина, которая показывает, насколько хорошо провод изолирован, называется сопротивлением изоляции.
Чем выше сопротивление, тем надежнее защищены жилы, по которым протекает ток. Каждая марка кабелей имеет свое значение этого показателя. Сопротивление изоляции устанавливается ГОСТом или техническими условиями (ТУ).
Измеряется сопротивление при заданной температуре (около +20°) специальным прибором (мегаомметром). Если проводить измерения при отрицательных температурах, то его значение будет занижено, а в случае жарких условий – завышено. После снятия показаний их заносят в протокол «Измерение изоляции проводов», сравнивают с нормативными и делают выводы о том, пригодны или нет кабели к дальнейшему использованию. Электропроводка, не выдержавшая испытание подлежит ремонту или замене. Сроки периодичности проведения испытания изоляции проводов оговорен Правилами. Так же проверка изоляции проводов производится после окончании электромонтажных работ, ремонтных работ, после намокания или перегрева проводки.
Как правильно проверить сопротивление изоляции проводников с помощью мегаомметра смотрите видеофильм:

допустимые значения измерений, минимальные нормы для кабелей и приборов

Во многом безопасность электрической сети определяется качеством изоляции. Периодическое ее испытание позволяет предотвратить возникновение различных аварий и даже поражение током живого организма. Суть тестирования заключается в замере сопротивления изоляции с помощью специальных приборов. Любое отклонение от требуемых норм является причиной замены или ремонта электрооборудования.

Сопротивление изоляции

Суть измерений

Под сопротивлением изоляции понимается способность материала не пропускать через себя электрический ток. Для каждого диэлектрика, в зависимости от места использования, установлены свои нормативные требования. Периодичность проверки и необходимые значения указываются в «Правилах устройства электроустановок» (ПУЭ) и в «Правилах технической эксплуатации электроустановок потребителями» (ПТЭЭП).

Все виды испытаний можно условно разделить на три группы:

  • проводимые производителем на заводе;
  • выполняемые непосредственно на объекте после модернизации или проведения ремонта;
  • запланированные согласно требованиям правил безопасности и нормам.

Возможные повреждения, кроме заводских дефектов, чаще всего возникают из-за условий эксплуатации. Это воздействие сверхтоков, вызывающих перегрев защитной оболочки, влияние химических реагентов, механические разрывы, вызванные как ошибками монтажа, так и грызунами. Цель измерений заключается в предотвращении поражения человека электрическим током и обеспечения пожарной безопасности.

Повреждение изоляции вызывает пробой. Это ситуация, при которой между двумя изолированными друг от друга проводниками появляется электрический контакт. Например, между рядом лежащими проводами в кабеле или при прикосновении человека к частям электроустановки. Обычно при пробое наблюдается прожженное отверстие и изменение цвета изоляционного материала. В основе механизма пробоя твердого диэлектрика лежит электронный лавинообразный процесс. Наступает он из-за образования в материале так называемого плазменного газоразрядного канала.

К измерению изоляции допускается только специалист, имеющий удостоверение о проверке знаний и группу допуска не ниже третьей, если замеры проводятся в сети с напряжением до 1 кВ, и не ниже четвертой — при измерении выше 1 кВ.

Суть измерений

После завершения измерения электрического сопротивления изоляции, полученные результаты обрабатываются и делается вывод о возможности дальнейшей эксплуатации сети. Так, большое значение для достоверности результата имеет температура окружающей среды. Нормирование измерений в ПУЭ указано для 20 °C, поэтому если работы выполняют при другой температуре, то полученные данные пересчитывают по формуле: R=K*Rиз, где K — коэффициент приведения указанный в дополнениях к ПУЭ.

Используемые приборы

Приборы, с помощью которых проводят измерения, условно разделяются на две группы: щитовые измерители и мегомметры. Первые применяются с подвижными или стационарными электроустановками с отдельной нейтралью. В типовую конструкцию приборов контроля изоляции щитовой входит индикаторная и релейная часть. Эти измерители могут работать в непрерывном режиме и использоваться в сетях переменного напряжения 220 В или 380 В разной частоты.

В большинстве же случаев проведение измерений осуществляется мегомметром. Его отличие от обыкновенного омметра в том, что он работает с довольно высокими значениями напряжения, которые прибор сам и генерирует. Существует два типа мегомметров:

Используемые приборы

  1. Аналоговые. В них для получения необходимой величины напряжения используется механический генератор, представляющий собой динамо-машину. Этот тип часто называют «стрелочным» из-за наличия градуированной шкалы и динамической головки со стрелкой. В принципе измерения лежит магнитоэлектрический эффект. Чем больше значение тока протекает через катушку, тем, в соответствии с законом электромагнитной индукции, на больший угол отклоняется и стрелка. Приборы относятся к простому типу устройств с хорошей надежностью. На сегодня уже морально устарели, так как обладают значительной массой и габаритами.
  2. Цифровые. В схеме современного устройства используется мощный генератор сигнала, собранный на интегральной микросхеме (ШИМ контроллер) и полевых транзисторах. Дискретные мегомметры, в зависимости от своей конструкции, могут работать от сетевого адаптера или независимого источника питания, например, аккумуляторной батареи. Результаты выводятся на жидкокристаллический дисплей. Работа построена на сравнении измеренного сигнала с эталонным и обработкой данных в специальном блоке — анализаторе. Прибор обладает небольшим весом и размерами, но для работы с ним необходима определенная квалификация.

Главным параметром, характеризующим работу измерителя, является погрешность выдаваемого результата. Кроме того, к его основным техническим параметрам относят: пределы сопротивления, величину генерируемого напряжения, температурный диапазон.

Методика испытания

Для того чтобы правильно измерить сопротивление изоляции, необходимо подготовить как предмет испытаний, так и сам прибор. Температура в помещении должна находиться в пределах 25±10 °C с относительной влажностью не более 80%. Перед началом работ следует отключить измеряемый объект от питающей сети. Убедиться в том, что на отключенной линии не выполняются работы и никто не прикасается к токоведущим частям. Все предохранители, лампы и тому подобные электрические приборы должны быть сняты.

Требования безопасности

Перед испытанием с отключенных токоведущих частей снимается остаточный заряд. Делается это путем их соединения с шиной заземления. Контактная перемычка убирается только после подключения измерителя. По окончании испытания остаточный заряд снова снимается кратковременным восстановлением заземления.

В стандартную комплектацию мегомметра входит три щупа. К ним подключается: защитное заземление, тестируемая линия, экран. Последний используется для исключения токов утечки.

Методику измерения можно представить следующим образом:

Методика испытания

  1. В соответствии с требованиями ПУЭ, предъявляемыми к линии, выбирается тестовое напряжение. Например, для домашней проводки устанавливается значение от 100 В до 500 В. При работе с цифровым прибором для этого необходимо нажать кнопку «Тест», а на аналоговом покрутить ручку до того момента, пока индикатор не сообщит о появлении нужной величины напряжения.
  2. Линейный вывод тестера подключается к проверяемой жиле кабеля, а земляной — к остальным проводам, объединенным в жгут. То есть каждая жила проверяется относительно остальных проводов, электрически связанных между собой.
  3. Каждая жила испытывается относительно земли, при этом остальные провода к заземлению не подключаются.
  4. Если полученные данные оказываются неудовлетворительными, то измерения проводят отдельно для каждой жилы по отношению ко всем взятым проводникам в кабеле.
  5. Все полученные значения записывают, а затем их сравнивают с нормами ПУЭ и ПТЭЭП.

Следует отметить, что если по каким-либо причинам в низковольтной сети перед испытанием отключить нагрузку не представляется возможным, то замер фазного и нулевого проводников проводится только относительно РЕ (земли). При этом рабочие нули следует отключить от нейтральной шины. Если же это не выполнить, то полученные данные для любого провода будут одинаковы и равны сопротивлению проводника с наихудшими параметрами.

Допустимые значения

Минимальное показание измеренных напряжений должно быть выше нормированных значений. Необходимая величина сопротивления закладывается заводом изготовителем кабельной или электротехнической продукции, согласно действующим техническим условиям.

Контроль над изоляцией

Выпускаемая электротехническая продукция различается на несколько типов и бывает: общего применения, силовой, контрольной и распределительной. Между собой изделия разделяют не только по физическим характеристикам, но и конструктивным. Их разнообразие обусловлено средой окружения, в которой они используются. Например, кабель, предназначенный для прокладки в земле, усиливается металлической лентой и состоит из нескольких слоев изоляции.

Измеряется сопротивление изоляции в Омах. Но из-за больших величин с показателем всегда используется приставка мега. Указываемое число обычно рассчитано для определенной длины, чаще всего это километр. Если же длина меньше, то просто выполняется перерасчет.

Для кабелей, использующихся в связи и передающих низкочастотный сигнал, сопротивление изоляции, должно быть не менее 5 тыс. МОм/км. А вот для магистральных линий — выше 10 тыс. МОм/км. Но при этом всегда минимальное необходимое значение указывается в паспорте на изделие.

В общем же случае приняты следующие нормы сопротивления изоляции:

  • кабель, проложенный в помещении с нормальными условиями окружающей среды, — 0,50 МОм;
  • электроплиты, не предназначенные для переноса, — 1 МОм;
  • электрощитовые, содержащие распределительные части и магистральные провода, — 1 МОм;
  • изделия, на которые подается напряжение до 50 В, — 0,3 МОм;
  • электромоторы и другие приборы, работающие при напряжении 100−380 вольт, — 0,5 МОм;
  • устройства, подключаемые к электрической линии, предназначенной для передачи сигнала с амплитудой до 1 кВ, — 1 МОм.

Допустимые значения

Для кабелей, подключенных к силовым линиям, действует немного другая норма. Так, провода, используемые в электрической сети с напряжением более 1 кВ, должны иметь значение сопротивления не менее 10 МОм. Для остальных же, кроме контрольных, минимальный порог снижен вдвое. Для контрольных проводов норматив требует значение сопротивления не менее 1 МОм.

Контроль над изоляцией

Сопротивление изоляции относится к важному параметру электротехнической продукции. Именно от нахождения параметра в установленных нормах зависит безопасность работы. Поэтому важно периодически замерять величину, вовремя выявляя отклонения. Кроме того, для промышленных объектов предусмотрена обязательная периодичность проведения измерений.

В соответствии с установленными нормами и правилами, измерения изоляции должны осуществляться:

  • для передвижных или переносных установок не реже одного раза в полугодии;
  • для внешних приборов и кабелей наружной прокладки, а также в помещениях с повышенной опасностью — не менее одного раза в год;
  • для всех остальных случаев не реже одного раза в три года.

То есть в помещениях, например, таких как офис, магазин, школа, измерение на сопротивление должно выполняться не реже одного раза в 36 месяцев. После окончания испытаний в обязательном порядке составляется акт, в котором указываются измеренные данные. Если замеры неудовлетворительные, то электрический участок выводится в ремонт до момента его приведения к требуемым нормам.

Требования безопасности

Одно из основополагающих правил при исследовании изоляции заключается в том, что приступать к работе, не удостоверившись в отсутствии напряжения на измеряемом участке, нельзя. Прибор, используемый для испытаний, должен быть поверенным или хотя бы быть сертифицированным.

Использовать необходимо лишь только тот мегомметр, выдаваемое напряжение которого соответствует установленным нормам. Так, для сетей или оборудования с напряжением до 50 В, используется тестер, выдающий 100 В. Применение прибора с меньшим значением не даст правдивости информации о состоянии участка, а большего — может привести к повреждениям.

Контроль над изоляцией

Измерение сопротивления мегомметром необходимо выполнять только на отключенных токоведущих частях, с обязательным снятием остаточного заряда. При этом заземление с токопроводящих частей снимается лишь после подключения тестера. Соединительные провода подсоединяются с помощью изолирующих штанг. При работе прикасаться к токоведущим частям, даже в диэлектрических перчатках, запрещено.

Контроль над изоляцией Загрузка…

Отправить ответ

avatar
  Подписаться  
Уведомление о