8-3842-33-85-00 - магазин жидких обоев

г. Кемерово, Рынок "Привоз" бокс №1

Как увидеть луч лазерного уровня днем: Как увидеть лазерный луч днем — MOREREMONTA – Как увидеть луч лазерного уровня днем — Строительный портал №1

Как увидеть лазерный луч днем — MOREREMONTA

Ни для кого не секрет, что с каждым годом лазерные уровни да и лазерный инструмент в целом, всё больше и больше проникают в нашу повседневную жизнь, заменяя собой устаревшие приборы, при работе с которыми надо иметь определённые знания и умения.

Для работы с лазерным нивелиром не требуется ни каких определённых навыков и умений, с ним с лёгкостью сможет работать даже самый неподготовленный человек.

Многие счастливые обладатели лазерных нивелиров уже оценили неоспоримые преимущества этих приборов при проведении работ по разметке в помещениях.

Решение проблем с дневным и солнечным светом

Рано или поздно у каждого пользователя лазерного уровня, возникает необходимость провести разметку на улице, это может быть любое строительство на приусадебном участке, в ландшафтном дизайне земельного участка или при строительстве гаража.

И вот в час «Х» Вы включаете прибор на улице в дневное время, и с досадой обнаруживаете, что луча совершенно не видно уже на 5 метрах, при чём абсолютно не важно, дорогие это или дешёвые лазерные уровни. Да увы, солнечный дневной свет самый губительный для лазера этого класса, но есть несколько выходов из данной ситуации, смотрите их ниже.


В этом случае Вам несомненно поможет приёмник лазерного луча! У большинства лазерных нивелиров есть клавиша, которая переводит прибор в специальный пульсирующий режим, при котором линии начинаю гореть на порядок тусклее. Именно эта функция позволяет работать с лазерным нивелиром на улице при любой степени освещённости.

Приёмник лазерного излучения — это отдельный не большой прибор, они бывают разного размера, дизайна, с ЖК дисплеем и без. Приёмники лазерного излучения практически не поставляются в комплекте с лазерными уровнями, и приобретаются отдельно.

Приёмники идут в комплекте практически с каждым ротационным лазерным нивелиром, это нивелиры предназначенные для работы на большие расстояния до 1000 метров!

Приёмник лазерного излучения имеет специальный встроенный фотоэлемент, который улавливает лазерный луч и показывает его местоположение визуальным и звуковым сигналом, в тот момент, когда луча человеческим глазом не видно.

Диапазон работы с приёмником у каждого лазерного нивелира (имеющего данную функцию) разный, но минимум начинается от 30 метров! Смотрите технические характеристики в обзорах приборов.

Но есть и другие способы помимо непосредственно самого детектора, которые позволят поработать днём на улице с лазерным нивелиром. Полноценной альтернативой приёмнику можно назвать не все способы, но есть один действительно очень схожий и доступный вариант. Давайте рассмотрим каждый из методов по подробнее.

Это использовать какой-нибудь предмет с отражающей поверхностью, лучше всего подходит простая металлическая линейка. Если её повернуть под определённым углом, то лазерная линия будет хорошо видна.

2. Второй вариант подходит только тем, у кого приборы имеют дополнительные лазерные точки, к примеру, как у недорогого китайского нивелира (на фото точка именно этой модели). Дело в том, что концентрация пучка в точке намного больше, чем в линии, поэтому лазерную точку отчётливо видно днём на улице на расстоянии до 15 метров в одну сторону.

3. Способ подходит всем, с любой моделью нивелира. Как вы наверное уже догадались, это разметка в тёмное время суток, и чем темнее это время, тем дальше будет виден лазерный луч.

Поэтому, если Вы задумались или собрались приобрести лазерный уровень, рекомендую перед покупкой сразу определить для себя, потребуется ли производить какие-либо работы на улице при дневном освещении, исходя из этого рассматривать нивелир с функцией или без функции «работы с приёмником».

4. Самый интересный метод определения местоположения лазерного луча на больших расстояниях. Причём разметку можно делать на гораздо большем расстоянии, чем с приёмником, если таковой режим в Вашем нивелире есть.

Да, надо отметить, что этот способ работает абсолютно с каждым лазерным построителем плоскостей, не важно есть у него режим работы с приёмником или нет!

Итак, чтобы произвести разметку на улице, к примеру на 100 метрах нам понадобится простой сотовый телефон с фронтальной камерой, который на сегодняшний день есть практически у каждого.

Далее для обнаружения лазерной линии включаем фронтальную камеру телефона и начинаем сканировать участок, где предположительно проходит линия. При точном попадании лазерного луча на фронтальную камеру, на экране телефона будет видна яркая точка, которая при небольшом смещении телефона вверх или вниз будет угасать.

В тот момент, когда на экране свечение точки будет самым ярким, мы и делаем отметку ровно на против глазка камеры.

Таким образом Вы получаете разметку с минимальной погрешностью, с таким же принципом работы, как и лазерный приёмник.

Для лучшего представления метода, рекомендуем посмотреть следующие видео:

Видео работы с лазерным нивелиром на улице

Приёмники Firecore

Рекомендуемые обзоры и статьи

Обзор лазерного уровня SHIJING 7359 3D Green

Ни для кого не секрет, что с каждым годом лазерные уровни да и лазерный инструмент в целом, всё больше и больше проникают в нашу повседневную жизнь, заменяя собой устаревшие приборы, при работе с которыми надо иметь определённые знания и умения.

Для работы с лазерным нивелиром не требуется ни каких определённых навыков и умений, с ним с лёгкостью сможет работать даже самый неподготовленный человек.

Многие счастливые обладатели лазерных нивелиров уже оценили неоспоримые преимущества этих приборов при проведении работ по разметке в помещениях.

Решение проблем с дневным и солнечным светом

Рано или поздно у каждого пользователя лазерного уровня, возникает необходимость провести разметку на улице, это может быть любое строительство на приусадебном участке, в ландшафтном дизайне земельного участка или при строительстве гаража.

И вот в час «Х» Вы включаете прибор на улице в дневное время, и с досадой обнаруживаете, что луча совершенно не видно уже на 5 метрах, при чём абсолютно не важно, дорогие это или дешёвые лазерные уровни. Да увы, солнечный дневной свет самый губительный для лазера этого класса, но есть несколько выходов из данной ситуации, смотрите их ниже.


В этом случае Вам несомненно поможет приёмник лазерного луча! У большинства лазерных нивелиров есть клавиша, которая переводит прибор в специальный пульсирующий режим, при котором линии начинаю гореть на порядок тусклее. Именно эта функция позволяет работать с лазерным нивелиром на улице при любой степени освещённости.

Приёмник лазерного излучения — это отдельный не большой прибор, они бывают разного размера, дизайна, с ЖК дисплеем и без. Приёмники лазерного излучения практически не поставляются в комплекте с лазерными уровнями, и приобретаются отдельно.

Приёмники идут в комплекте практически с каждым ротационным лазерным нивелиром, это нивелиры предназначенные для работы на большие расстояния до 1000 метров!

Приёмник лазерного излучения имеет специальный встроенный фотоэлемент, который улавливает лазерный луч и показывает его местоположение визуальным и звуковым сигналом, в тот момент, когда луча человеческим глазом не видно.

Диапазон работы с приёмником у каждого лазерного нивелира (имеющего данную функцию) разный, но минимум начинается от 30 метров! Смотрите технические характеристики в обзорах приборов.

Но есть и другие способы помимо непосредственно самого детектора, которые позволят поработать днём на улице с лазерным нивелиром. Полноценной альтернативой приёмнику можно назвать не все способы, но есть один действительно очень схожий и доступный вариант. Давайте рассмотрим каждый из методов по подробнее.

Это использовать какой-нибудь предмет с отражающей поверхностью, лучше всего подходит простая металлическая линейка. Если её повернуть под определённым углом, то лазерная линия будет хорошо видна.

2. Второй вариант подходит только тем, у кого приборы имеют дополнительные лазерные точки, к примеру, как у недорогого китайского нивелира (на фото точка именно этой модели). Дело в том, что концентрация пучка в точке намного больше, чем в линии, поэтому лазерную точку отчётливо видно днём на улице на расстоянии до 15 метров в одну сторону.

3. Способ подходит всем, с любой моделью нивелира. Как вы наверное уже догадались, это разметка в тёмное время суток, и чем темнее это время, тем дальше будет виден лазерный луч.

Поэтому, если Вы задумались или собрались приобрести лазерный уровень, рекомендую перед покупкой сразу определить для себя, потребуется ли производить какие-либо работы на улице при дневном освещении, исходя из этого рассматривать нивелир с функцией или без функции «работы с приёмником».

4. Самый интересный метод определения местоположения лазерного луча на больших расстояниях. Причём разметку можно делать на гораздо большем расстоянии, чем с приёмником, если таковой режим в Вашем нивелире есть.

Да, надо отметить, что этот способ работает абсолютно с каждым лазерным построителем плоскостей, не важно есть у него режим работы с приёмником или нет!

Итак, чтобы произвести разметку на улице, к примеру на 100 метрах нам понадобится простой сотовый телефон с фронтальной камерой, который на сегодняшний день есть практически у каждого.

Далее для обнаружения лазерной линии включаем фронтальную камеру телефона и начинаем сканировать участок, где предположительно проходит линия. При точном попадании лазерного луча на фронтальную камеру, на экране телефона будет видна яркая точка, которая при небольшом смещении телефона вверх или вниз будет угасать.

В тот момент, когда на экране свечение точки будет самым ярким, мы и делаем отметку ровно на против глазка камеры.

Таким образом Вы получаете разметку с минимальной погрешностью, с таким же принципом работы, как и лазерный приёмник.

Для лучшего представления метода, рекомендуем посмотреть следующие видео:

Видео работы с лазерным нивелиром на улице

Приёмники Firecore

Рекомендуемые обзоры и статьи

Обзор лазерного уровня SHIJING 7359 3D Green

В этой статье описано как своими руками сделать недорого маломощного лазера линейный лазер. Применить эту самоделку можно для создания самодельного строительного уровня, при создании световых эффектов при оформлении домашней дискотеки, для дополнительного заднего сигнала автомобилей ,мотоциклов, велосипедов и т.д.

Лазерном диод представляет собой полупроводниковый кристалл выполненный в форме тонкой прямоугольной пластинки. Луч проходит через собирающую линзу и представляет тонкую линию, при пересечении с поверхностью видим точку. Чтобы получить видимую линию можно установить цилиндрическую линзу перед лучом лазера. Преломленный луч будет выглядеть в виде веера.


Предлагаемый самоделку может быстро и недорого сделать даже начинающий радиолюбитель.

Я сделал его из лазера мощностью 5мВт, на напряжение питания 3В с AliExpress. Несмотря на маленькую мощность лазерного излучателя необходимо соблюдать элементарную технику безопасности не направлять луч в глаза.

Весь процесс изготовления посмотреть в видео:

Перечень инструментов и материалов
-лазерный излучатель 5мВт, 3В (ссылка на лазер)
-отвертка; ножницы;
-паяльник;
-кембрик; фольгированный текстолит;
-две батарейки на1,5В;
-соединительные провода; корпус батарейного отсека с кнопкой включения от налобного фонаря;
-резистор на 5Ом;
-светодиод с прозрачной колбой;
-полоска жести.

Шаг первый. Изготовление платы лазера.

Как увидеть луч лазерного уровня днем — Строительный портал №1



Source: evroremont-dom.ru

  Применение лазерного уровня при проведении ремонта квартиры намного ускоряет весь процесс работы и можно сказать, что он есть у всех бригад профессионально занимающихся ремонтом. При этом наличие дорогого уровня у мастера нисколько не указывает на степень его квалификации — простой криворукий Федя, показав заказчику инструмент за 20К, всё равно зальет стяжку или сделает подвесной потолок только в силу своих способностей. Основная же масса бригад особо не беспокоясь используют недорогие лазерные уровни, при этом полность надеясь на точность китайского барахла. И практически все мастера после покупки лазерного уровня никогда не проверяют его на точность и все погрешности настройки уровня начинают выявляться в процессе работы, когда вылазят все косяки проведённой работы. Кривые перегородки, заваленные проёмы, стяжки залитые в уклон, криво наклеенные обои сразу покажут зашореность таких криворучек. И особой разницы между дорогим и дешёвым уровнем в плане доверия к точности нет — вся конечная настройка любого лазерного уровня является механической и очень явно зависит от сборщика на производстве.

  Используя самые высокоточные инструменты с нулевыми отклонениями на любых расстояних ( водяной уровень и отвес ) можно без особых проблем проверить ваш лазерный уровень и по возможности его настроить практически идеально ( 0.00 мм на 15 метров ). Большее расстояние при ремонте в квартире обычно не требуется да и сама линия свечения лазера на дальних расстояниях начинает размываться.

  При отсутствии водяного уровня проверить лазерный уровень можно обычным встречным замером на желательно большом расстоянии (6-10 метров), что даст более точное выявление погрешности.

  С отвесом всё более проще: прикрепив его к потолку вы сразу же увидите как светит вертикаль уровня — по шнуру отвеса или со смещением.

  И теперь, когда известны все исходные по трём основным направлениям можно приступить к настройке китайского лазерного уровня и сделать из него реальный инструмент с практически нулевыми допусками.

Сниимаем аппарат со штатива и откручиваем 3 винта в подставке.

Снимаем стопорное кольцо на поворотной оси инструмента и выкручиваем 4 винта в основании.

Внутри подставки закреплён магнит, который там просто бесполезен — т.к. сам маятник сделан из аллюминиевого сплава, а винт, накрученный снизу, из латуни. Быстрое успокоение маятника при таких материалах просто не работает, что конечно является в данном случае плюсом. Сверхсильный неодимовый магнит в любом случае помешал бы нормальному выравниванию маятника и также явился бы частью причин возникновения погрешности. Вместо магнита, который удаляется, желательно просто увеличить вес маятника, что сделает его выравнивание более стабильным, но конечно приведёт к более длительному времени успокоения.

Далее откручиваем ещё 4 винта на самом корпусе.

Снимаем переднюю часть и видим сам маятник и блоки лазеров со стеклянными трубками, которые формируют линию из точки лазера.

Два сквозых винта в маятнике вобщем и являются всем центром настройки лазерного уровня. Один настраивает точность луча вдаль, другой вертикаль или горизонт — решать уже вам что нужнее. Просто одновременно настроить вертикаль и горизонт не получится — при обследовании нескольких таких экземпляров обнаружилось что вставленные блоки, которые зафиксированны двумя винтами, не дают развёртку линий креста под углом ровно в 90 градусов.

Сама настройка производится именно в таком виде, со снятой передней частью. Полуразобранный инструмент устанавливается обратно на треногу, при этом части основания лучше закрепить, чтобы уровень случайно не упал во время перетаскиваний для настройки.

Вся настройка начинается с регулировки винтом в маятнике вертикали свечения лазерного луча по отвесу. При этом, если линия имеет дугообразность, то придётся расковырять клей, который фиксирует формирователи луча и регулировкой винтами добиться прямой линии свечения по всей длине шнура отвеса. Сразу же после выставления идельного отображения луча лазера на верёвке отвеса необходимо зафиксировать клеем все детали относящиеся к проведённой регулировке.
Следующим этапом встречными замерами или по меткам гидроуровня проверяется горизонт и если дополнительно натянуть шнур с краёв линии , то можно определить и дугообразность свечения, которая исправляется в первую очередь. Конечно если горизонт после предыдущих манипуляций получился идеальным, то можно просто радоваться. Если нет — то можно начать его регулировку, при которой винты в маятнике уже нельзя трогать т.к. этим собъётся только что настроенная вертикаль.

И поэтому регулировка горизонта возможна только небольшими подвижками всего блока в котором находится лазер. Перед этим необходимо слегка ослабить винты фиксации и сам сдвиг производить шилом, действуя им в качестве рычага. После получения нужного результата также необходимо все части, которые крутились, зафиксировать клеем, но винты фиксации уже трогать нежелательно, т.к. при их затягивании и соответственно скользящей нагрузке на сам блок, который они фиксируют, вся проведённая настройка может исчезнуть. Конечно стоит попробовать затянуть винты фиксации и если у вас это получилось без сбива, то поздравив себя ещё раз, можно приступить к последнему этапу — регулировке горизонта вдаль. Эту настройку можно производить просто встречными замерами на двух одновременно видимых углах стен на расстоянии 5-6 метров между собой или по меткам гидроуровня. Если таких углов в помещении нет, то для настройки можно использовать практически любые вещи: стремянки, правило прислоненное к стене. Вся регулировка производится винтом в маятнике, при выкручивании или затяжке которого меняется центр массы маятника и соответственно угол наклона линии свечения лазера вдаль. Конечно для создания меток можно использовать гидроуровень, но его ещё необходимо будет найти, наполнить водой, проверить правильность меток и будет необходим помощник. Такая последовательность занимает много времени в отличии от простых встречных замеров, при которых погрешность сразу показана. Винт на маятнике по завершении всех подкручиваний необходимо также зафиксировать клеем, что сохранит настройку при самых разнообразных ударах при работе или перевозке.

После такой настройки погрешность лазерного уровня на заданном вами растоянии практически будет нулевой. Точность водяного уровня и шнура отвеса сделают из ПГ почти эталон точности и вы с лёгкостью утрёте критиков или понторезов с дорогими лазерными уровнями 🙂

Как использовать лазерный нивелир днем. Хитрость при возведении первого ряда блоков.

Лазерный нивелир днем.

Posted By: YanaShi 06.03.2017

Лазерный нивелир – это полезный измерительный прибор при ремонте квартиры, стройке дома и не только. С его помощью легко выставить плоскость, а затем произвести необходимые работы.  Использование лазерного нивелира на стройке дома своими силами и для нас оказалось большой необходимостью. Но, разумеется, все знают, что основным минусом нивелира является то, что при дневном (естественном) свете лазерный луч практически не видно. В темное же время суток лазерный луч видно отлично, но работать в полной темноте не всегда удобно и результативно. Именно поэтому предлагаем Вашему вниманию удобный лайфхак, как сейчас модно говорить, для использования этой хитрости на стройке. Она очень помогла нам при кладке первого ряда блоков из газобетона на наш фундамент.

  1. Устанавливаем нивелир.
  2. Затем нам необходимо определиться, в каком именно месте нужно сделать замеры. Создаем в этом месте тень. Мы использовали часть самой обычной картонной коробки, которую установили таким образом, чтобы луч был виден внутри неё в тени.
  3. С легкостью производим замеры.

    Использование нивелира днем.

Пожалуй, на сегодня на этом все. Будем рады, если  этот простой совет кому-то хоть чуть-чуть облегчит сложный процесс стройки дома своими руками. Кстати говоря, эта не единственная хитрость при использовании нивелира днем. Существуют специальные красные очки для лазера, которые можно найти в строительных магазинах, но, судя по комментариям, отзывы о них достаточно разнообразны. Так что решать только Вам.

А сейчас Вы можете посмотреть короткое видео с нашего канала на YouTube и увидеть данный лайфхак своими руками в деле на примере монтажа первого ряда блоков  на фундаменте дома.

                                                                                                                С наилучшими пожеланиями,

Яна и Женя Шигоревы.

 

Лазерная безопасность наглядно, или почему не стоит смотреть в лазерный луч / Habr

Сегодняшняя статья будет несколько занудной, поскольку поднимает те вопросы, которые обычно никто обсуждать не любит. И речь в ней пойдет об основных, наиболее важных вопросов связанных с ТБ по работе с лазерами. Я постараюсь рассказать об этой неприятной, но очень важной теме с минимумом нудных букв и цифр, которые так любят приводить в разных «справочниках по правилам безопасной эксплуатации», разобрав основные вопросы с помощью наглядных и доступных примеров в духе «что будет, если». Какую опасность таит в себе лазер, все ли лазеры одинаково опасны? Будем разбираться.

ВНИМАНИЕ: Данная статья может содержать ошибки и неточности, так как я не специалист в медицинских вопросах.

Как известно, основное свойство лазера – это очень высокая направленность и монохроматичность излучения, значительная мощность светового потока сконцентрирована в очень тонком пучке. В свою очередь каждый из нас снабжен очень чувствительным аппаратом для восприятия света – нашими глазами. Глаза, напротив, спроектированы так, чтобы использовать самые малые уровни интенсивности света для обеспечения их хозяина необходимой зрительной информацией. Уже становится понятно, что сочетание высококонцентрированного и мощного светового пучка с чувствительным зрительным органом уже слабосовместимо, соответственно такой пучок будет представлять опасность. Это, в общем-то, очевидно, если на Солнце нельзя смотреть дольше нескольких секунд, то в луч мощного лазера, который прожигает дырки в бумаге – и подавно. Но не всё так просто. Опасность лазерного излучения сильно зависит от его характера (импульсное или непрерывное), мощности, длины волны. Также очень многие установки основанные на газовых или твердотельных\жидкостных с ламповой накачкой лазерах содержат цепи и элементы, находящиеся под высоким напряжением – трансформаторы, радиолампы, коммутационные разрядники и тиратроны, мощные конденсаторы, которые являются источником электрической опасности. Но на них я заострять внимание не буду, об электробезопасности написана масса литературы и это набившая оскомину тема среди тесластроителей. Здесь я ограничусь лишь рассмотрением опасности только оптической – которую несет непосредственно лазерное излучение.

При варьировании параметров лазера будут также варьироваться механизмы повреждения глаза, которые детально описаны в специализированной литературе. Эффекты, производимые лазерным излучением, безотносительно его мощности описаны на картинке:

Эти данные не стоит принимать за истину в последней инстанции, это лишь версия одной из книг. Описанные эффекты могут комбинироваться в любых соотношениях, в зависимости от остальных параметров – мощности и длины волны. Строго говоря импульсный режим работы лазера можно разделить ещё на два – импульсный режим свободной генерации и импульсный режим с модулированной добротностью. Во втором случае лазер переводится в т.н. «режим гигантского импульса», когда вся накопленная при накачке энергия из рабочей среды выбрасывается коротким (единицы-десятки наносекунд) импульсом. Мощность в импульсе при этом достигает многих десятков и сотен мегаватт при скромных субджоульных энергиях. При воздействии «гигантского импульса» повреждения имеют в первую очередь взрывной механизм, так как образовавшееся при поглощении тепло не может отвестись никуда за столь короткое время. При действии импульса свободной генерации повреждения идут больше по термическому механизму, поскольку тепло частично успевает отводиться и распределиться в толще поглощающего слоя, так как импульс имеет меньшую пиковую мощность из-за сравнительно большой длительности (миллисекунды).

Особенно характерна роль длины волны, поскольку прозрачность глазных сред неодинакова для разных длин волн. В качестве отступления от темы отмечу, что для рентгеновского или гамма-излучения принято считать, что биологический эффект не зависит от длины волны, меняется только проникающая способность. И в целом в профильной литературе на вопросах защиты от рентгеновского излучения задерживаются лишь на нескольких страницах, тогда как вопросам, связанным с безопасностью при работе с лазерным излучением могут посвящать целые разделы. Но вернемся к зависимости эффектов от длины волны. Тут обратимся к ещё одной таблице из той же книжки. В ней описаны механизмы повреждения в зависимости от длины волны, опять же безотносительно мощности.

Понятно, что наиболее очевидной будет опасность излучения видимого диапазона, так как именно оно достигает сетчатки и воспринимается ей. Но если это очевидно – это не значит что наиболее опасно. В том-то и дело, что луч видимого диапазона можно заметить, да и мигательный рефлекс глаза в этом случае работает безотказно, в ряде случаев он может сильно уменьшить повреждения. Тогда как луч из ближнего инфракрасного диапазона уже заметить нельзя, но он тоже достигнет сетчатки и мигательного рефлекса нет. Именно сетчатка является наиболее чувствительной деталью глаза к повреждениям, и что самое печальное – неспособной к регенерации.

Таким образом, если известны режим излучения и длина волны, остается последний, по сути, решающий фактор – это мощность излучения. Именно она решает, сгорят у Вас глаза под лучом полностью, частично или не сгорят совсем. В зависимости от длины волны меняется лишь величина этой мощности, если луч непрерывный, или энергии импульса, если луч импульсный.

Именно по мощности излучения было принято разделение лазеров на существующие сейчас классы опасности. Рассмотрим их подробнее, заглянув на сайт Sam’s Laser FAQ. Для удобства приводится русский перевод с английского, выполненный модератором форума laserforum.ru Gall’ом. А кто найдет ошибку на картинке – тот молодец.

Итак, классы опасности.

Цитата:

• Лазерные изделия класса I
Нет известных биологических угроз. Излучение закрыто от любого возможного рассматривания человеком, а лазерная система имеет блокировки, не позволяющие включить лазер в открытом состоянии. (Большие лазерные принтеры, такие как DEC LPS-40, работают на гелий-неоновых лазерах в 10 мВт, являющихся лазерами класса IIIb, но принтер имеет блокировки для исключения любого соприкосновения с открытым лазерным пучком, поэтому устройство не представляет биологической опасности, хотя собственно лазер относится к классу IIIb. Это же относится и к проигрывателям CD/DVD/Blu-ray и маленьким лазерным принтерам, так как они являются лазерными изделиями класса I).

• Лазерные изделия класса II
Выходная мощность до 1 мВт. Такие лазеры не считаются оптически опасными устройствами, так как рефлексы глаз предупреждают любое происходящее повреждение. (Например, когда в глаз попадает яркий свет, веко автоматически моргает или человек поворачивает голову так, чтобы яркий свет пропал. Это называется рефлекторным действием или временем реакции. Лазеры класса II не создают повреждений глаза за такое время. Также никто не захочет смотреть на него в течение более продолжительного времени.) На лазерном оборудовании должны быть размещены предупреждающие знаки (желтые). Нет известных опасностей воздействия на кожу и нет пожарной опасности.

• Лазерные изделия класса IIIa
Выходная мощность от 1 мВт до 5 мВт. Такие лазеры могут приводить к частичной слепоте при определенных условиях и к другим повреждениям глаз. Изделия, содержащие лазер класса IIIb, должны иметь индикатор лазерного излучения, показывающий, когда лазер работает. Они также должны иметь знак «Danger» («опасность») и знак, показывающий выходное отверстие лазера, закрепленные на лазере и/или оборудовании. СЛЕДУЕТ установить выключатель питания в виде замка с ключом, чтобы предотвратить несанкционированное использование. Нет известных опасностей для кожи и пожарной опасности.

• Лазерные изделия класса IIIb
Выходная мощность от 5 мВт до 500 мВт. Такие лазеры считаются определенно угрозой для зрения, особенно на больших мощностях, которые ПРИВЕДУТ к повреждению глаз. Такие лазеры ОБЯЗАНЫ иметь замок с ключом против несанкционированного использования, индикатор наличия лазерного излучения, задержку включения от 3 до 5 секунд после подачи питания, чтобы оператор мог успеть уйти с пути луча, и механический затвор, позволяющий перекрывать луч во время использования. Кожа может быть обожжена на больших уровнях выходной мощности, а кратковременное направление на некоторые материалы может приводить к возгоранию. (Я видел аргоновый лазер на 250 мВт, воспламеняющий кусок красной бумаги менее чем за 2 секунды воздействия!) Красный знак «DANGER» («ОПАСНОСТЬ») и знак выходного отверстия ОБЯЗАНЫ быть размещены на лазере.

• Лазерные изделия класса IV
Выходная мощность >500 мВт. Такие лазеры МОГУТ повредить и ПОВРЕДЯТ глаза. Мощности уровня IV-го класса МОГУТ зажечь и ЗАЖГУТ горючие материалы при попадании, в том числе обожгут кожу и прожгут одежду. Такие лазерные изделия ОБЯЗАНЫ иметь:
Замок с ключом для предотвращения несанкционированного использования, блокировки для предотвращения использования системы со снятыми крышками, индикаторы наличия излучения, показывающие, что лазер работает, механические затворы для блокировки луча и красные знаки «DANGER» («ОПАСНОСТЬ») и знаки выходного отверстия, закрепленные на лазере.
Отраженный луч должен считаться таким же опасным, как первоначальный луч. (И снова, я видел 1000-ваттный лазер на CO2, прожигающий дыру в стали, так что представьте, что он сделает с вашим глазом!)

Конец цитаты.

Примечание: да, мои лазеры в основном относятся к 4ому классу опасности, и не содержат многих аппаратных мер защиты, поскольку с ними имею дело только я. Поэтому попрошу воздержаться в комментариях от вопросов, почему нет замка-выключателя или крышек с блокировками на моих лазерах. Указанные требования относятся в первую очередь к коммерчески выпускаемым установкам.

Теперь посмотрим, так сказать, наглядно, как выглядит травма глаза лазерным излучением. Я уже упоминал, что в поисках новых лазеров и их компонентов я посещаю различные организации. И однажды я посетил лазерное отделение местного центра лечения глазных болезней. В ходе общения со специалистами, я поинтересовался, попадались ли в их практике травмы, вызванные лазерным излучением. Ответ меня удивил. Дело в том, что за более чем 20летнюю практику работы, непосредственно лазерных травм было всего несколько штук. На мой вопрос, типа как так, если сейчас у каждого ребенка есть лазерная указка от 50 до 2000 мВт, лишь ответили, что людей с ожогами от указок не поступало. Зато было много людей именно с солнечными, нелазерными, ожогами сетчатки. Мне показали документы по наиболее примечательной лазерной травме – сильному повреждению центральной ямки сетчатки, вызванному зеркально отраженным импульсом из лазерного дальномера, построенном на импульсном неодимовом лазере (Nd:YAG) работавшем в режиме модуляции добротности. Энергия импульса составляла по разным оценкам от 20 до 100 мДж, при длительности импульса порядка 20 нс. Именно из-за модуляции добротности повреждение вышло столь тяжелым – так как в точке фокуса излучения был оптический пробой, вызвавшим гидравлический удар, который в свою очередь привел к центральному разрыву сетчатки и отеку последней совместно с гемофтальмом (кровоизлиянием в стекловидное тело). Мне разрешили просканировать документы на условиях их полной анонимизации. С помощью оптической когерентной томографии можно рассмотреть сетчатку в разрезе, в различных плоскостях. Так выглядел разрез на момент обращения за медицинской помощью. Видна четкая «пробоина» с «отогнутыми наружу» краями (на самом деле это отек).

Более крупным планом:

И в разных плоскостях:

Из текста предоставленных мне документов стало известно, что курс лечения длился 10 дней, по ходу которого решался вопрос об операции, в случае отслоения сетчатки. В качестве оперативного вмешательства по устранению возможной отслойки и закрытия разрыва предлагалась пневморетинопексия (ПРП). Консервативное лечение было направлено на рассасывание отека и предотвращение воспалительного процесса. По ходу наблюдения делалось также несколько фотографий глазного дна, а по окончанию курса было решено, что операция не понадобится, так как разрыв самостоятельно закрылся и зарос рубцовой тканью.

Фотографии глазного дна размещены в хронологическом порядке.

В кучке этих же документов лежала ещё одна распечатка оптической когерентной томографии после окончания лечения.

Как можно видеть, канал пробоя исчез, а края того места, которое было центральной ямкой приняли более сглаженные формы. На момент травмы острота зрения по табл. Сивцева составляла 0%, после окончания лечения было достигнуто улучшение до 30%. На мой вопрос, как это воспринимается субъективно, мне показали ещё одну картинку, на которой наглядно показано, что такое «центральная скотома». Это слепое пятно, из которого просто выпадает часть изображения. Мозг же способен «закрасить» его под цвет окружающего фона, но никаких деталей изображения видно не будет, так как нечем их видеть – светочувствительные клетки в этом месте уничтожены. Для данной статьи картинка взята из гугла. Также мне объяснили, что при наличии второго здорового глаза это слепое пятно не влияет на качество жизни.

Позже, мне удалось раскопать ещё одну таблицу со сравнительными клиническими данными, где рассматриваются исходы лазерных травм в зависимости от типа лазера и режима его работы. Как можно видеть, наиболее неблагоприятные исходы – в случае травм от лазеров, работавших в режиме модулированной добротности, так как повреждение сетчатки шло по взрывному механизму, тогда как лазерный импульс в режиме свободной генерации приводит только к термическому ожогу, который до некоторых пределов обратим, не смотря на гораздо большую энергию излучения. Строго говоря, локализация повреждения играет бОльшую роль, нежели параметры лазера, повреждение центральной ямки во всех случаях необратимо.

Вот ещё пример фотографии глазного дна с лазерным ожогом сетчатки, вызванным импульсом лазера на красителях. Лазеры на красителях сопоставимы с импульсными лазерами с модуляцией добротности по длительности импульса и энергии.

А теперь давайте посмотрим, как это происходит в динамике. Yun Sothory провел эксперимент «что будет если посмотреть в лазер», использовав в качестве подопытной жертвы дешевую веб-камеру, а в качестве лазера – самодельный лазер на растворе красителя, который накачивался самодельным азотным лазером. Результат на видео. И это при том, что у неё совершенно неживая и дубовая кремниевая «сетчатка». Что будет с глазами вполне очевидно.

Вот ещё один пример пострадавшей матрицы фотоаппарата — на 1:06 появляется линия выжженых пикселей вверху во время сценического лазерного шоу. Кстати, безопасность лазерных шоу это отдельная очень холиварная тема, о которую было сломано очень много копий в СНГ и на западе. Мощность лазерного излучателя до оптической системы разбивки и развертки луча порой достигает десятков Ватт.

Разберем теперь вопрос, а все ли лазеры одинаково опасны?
Можно однозначно сделать вывод, что наиболее опасными являются лазеры, работающие в импульсном режиме с малой длительностью импульса видимого и ближнего ИК-диапазона, особенно последние. И это действительно так. Однако, правила которые обычно пишутся занудным тоном для малоподговтоленных людей, заявляют что опасны все без исключения лазеры и любой лазер нужно жестко огораживать, запихивать под землю и никого к нему не подпускать. Тут нужны некоторые оговорки, поскольку все должно быть в пределах разумного. Не все лазеры одинаково опасны. Есть те, которые более опасны, есть те, которые менее опасны. Дальше следует моё жёсткое ИМХО, которое не претендует на истинность. А именно, оно состоит в том, что с любым лазером любой длины волны, кроме ближнего ИК-диапазона можно работать без средств защиты, если он работает в непрерывном или квазинепрерывном режиме, его средняя мощность не превышает 10-20 миллиВатт, и если не пялиться в луч. А если хочется пялиться, если есть риск попадания луча в глаза, например при визуальной настройке оптических систем, то абсолютный верхний предел мощности – 0.5-1 мВт, как написано в описании 2 класса опасности. Можно удовлетворить свое любопытство заглянув на 1-2 секунды в луч маленького гелий-неонового или диодного лазера мощностью 1 мВт и понять что это крайне неприятно, сравнимо с взглядом на Солнце. Но это мой личный опыт. Я бы все же рекомендовал никогда не пренебрегать средствами защиты глаз во всех случаях обращения с лазерами. Особняком среди мощных лазеров 4го класса стоят, опять же, лазеры на парах меди, так как из-за очень широкого пучка, энергетическая плотность у них маленькая. Так, к примеру, для моего лазера мощностью 5 Вт, плотность мощности в пучке составляет 16 мВт\мм2. Если предположить случайное попадания такого луча в глаз, то повреждения будут сравнимы с таковыми от вполне рядовой лазерной указки на 100 мВт, при условии что диаметр зрачка на этот момент будет порядка 3 мм. Но это лишь мои предположения, никому не советую проверять на практике. Средства защиты глаз при работе с таким лазером совершенно необходимы.

Если снова обратиться к таблице зависимости повреждений от длины волны, показанной в начале статьи, то может создаться впечатление, что для лазеров с излучением вне видимого и ближнего ИК-диапазонов защита не нужна, так как излучение не достигнет сетчатки, поскольку глазные среды непрозрачны на длинах волн короче 400 нм и длиннее 3 мкм. Отчасти это правильно. Действительно, сетчатка не пострадает, так как излучение с длиной волны больше 3 мкм поглощается слезной пленкой, и при небольших мощностях\энергиях это не опасно. Именно поэтому маломощные лазерные источники вроде лазерных дальномеров как раз переводят на длину волны порядка 3 мкм (эрбиевые лазеры). С другой стороны, есть серьезный риск сжечь роговицу, если мощность будет достаточной. При воздействии УФ излучения большой мощности повреждения идут в основном по фотохимическому механизму, а в случае дальнего ИК – по термическому. Но мощность нужна большая, на порядки бОльшая чем для лазеров видимого диапазона. Фигурально выражаясь, лазеры можно сравнивать с разными видами змей, среди которых есть ядовитые, убивающие одним своим кратким укусом, и удавы, убивающие с помощью большой и грубой силы долго и нудно, пока жертва не задохнется. Лазеры из невидимых УФ и дальних ИК-диапазонов можно сравнить именно с удавами, так как их мощность и есть та самая «грубая сила», особенно это касается СО2-лазеров излучающих сотни и тысячи Вт на длине волны 10.6 мкм. Вот пример ожога роговицы излучением СО2 лазера.

С вопросом «кто виноват» разобрались, теперь переходим к вопросу «что делать». Или, какие меры защиты стоит выбирать при работе с лазерным излучением. Основной мерой защитой от лазерного излучения является в первую очередь ограждение пути движения луча, ограничение его распространения поглотителями в конце оптического пути. Если ограждение организовать невозможно – то обязательно нужны защитные очки для глаз. Лучше когда обе меры защиты дополняют друг друга. Тем не менее, универсальных защитных очков не существует, кроме, разве что, таких. Посему прежде чем выбирать очки нужно точно знать, с какими лазерами предстоит иметь дело.

Все защитные очки проектируются для защиты от конкретных длин волн излучаемых лазерами, и для хороших очков всегда нормируется оптическая плотность на каждой длине волны. Оптическая плотность это коэффициент ослабления очков, в англоязычных стандартах он называется OD-X, где Х – цифра обозначающее количество порядков ослабления. Так, например, OD-6 означает, что очки ослабляют излучение на 6 порядков, т.е. в 1000000 раз на данной длине волны. Ослабление в 1000 раз будет обозначаться как OD-3 итд. Хорошие очки всегда имеют инструкцию к ним, в которой написано от каких длин волн излучения они защищают, и какие OD для каждой длины волны. Также, хорошие очки всегда имеют закрытую конструкцию и плотно прилегают к лицу, чтобы блики от излучения не могли пройти под очками, минуя фильтры. Вот примеры действительно ХОРОШИХ очков. Например, советские ЗНД-4-72—СЗС22—ОС23—1, которыми пользуюсь я. Это пример попытки сделать более-менее универсальные очки, рассчитанные на работу с распространенными типами лазеров. Для этого они имеют два вида светофильтров. Очки сделаны из мягкой резины, хорошо прилегающей к лицу, и имеют инструкцию.

Синие светофильтры предназначены для защиты от лазеров, работающих на длине волны 0.69 мкм и 1.06 мкм (рубиновый и неодимовый лазеры). На этих длинах волн гарантируется плотность OD-6. Эти же фильтры дают защиту от излучения в диапазоне длин волн 630-680 нм (гелий-неоновый, криптоновый лазеры) и в диапазоне 1.2-1.4 мкм, для них заявлено OD-3. Оранжевые фильтры дают защиту от длин волн в диапазоне от 400 до 530 нм (синие и зелёные лазеры) с OD-6 и также в диапазоне 1.2-1.4 мкм с OD-3. Сами по себе оранжевые фильтры не могут дать никакой защиты от излучения красных лазеров – для них нужны синие фильтры. Для удобства синие фильтры сделаны откидывающимися.

Такие очки я всегда использую при работе со всеми своими мощными лазерами, и они могут гарантировать защиту, при условии соблюдения инструкции. К сожалению, они имеют брешь для жёлтых лазеров, т.е. не дают гарантированной инструкцией защиты и ввиду этого полной универсальностью не обладают. У этих очков есть в продаже современный аналог, но он менее универсален, так как не имеет оранжевых фильтров.

Вот ещё один пример ХОРОШИХ очков иностранного производства. Они имеют сплошное прямоугольное стекло, не затрудняющее обзор, и прямо на корпусе очков отлит текст с параметрами по длинам волн и OD на них.

Теперь глянем не примеры ПЛОХИХ очков, которые я КАТЕГОРИЧЕСКИ не рекомендую. Это весь тот пластиковый китайский шлак, продаваемый на алиэкспрессе за 1-2-10 долларов. Эти очки не имеют ни полного прилегания к лицу, ни инструкций с заявленной оптической плотностью на разных длинах волн, ни сертификатов, ничего. И сделаны они из довольно нежного пластика. Готовы ли Вы доверить сохранность своих глаз какому-то безымянному китайцу, работающему за тарелку риса? Я не готов. Не покупайте китайский шлак, показанный ниже.

Единственное исключение – СО2 лазеры. Их излучение, вообще говоря, «тепловое» — длина волны слишком большая, и не проходит даже через простое прозрачное стекло и через простой прозрачный пластик. Т.е. показанные выше ХОРОШИЕ очки пригодны и для защиты от СО2 лазеров. Показанные здесь ПЛОХИЕ очки тоже обеспечат достаточную защиту от рассеянного излучения СО2 лазера, но не более того. Я бы все же рекомендовал стеклянные, так как прямой луч такого лазера просто прожжет пластик.

Отдельно я бы хотел остановиться на мерах безопасности, к которым прибегают производители лазерных технологических установок. В принципе, в случае если на нашем лазерном станке стоит СО2 лазер, то защита, полностью закрывающая поле обработки не обязательна при небольших уровнях мощности, типа до 50 Вт. А так достаточно ограждения из обыкновенного стекла или пластика. В принципе даже на лазерных станках с СО2 лазером мощностью на много киловатт не всегда можно встретить ограждение от рассеянного излучения, так как оно не представляет большой опасности, так как это излучение тепловое и воспринимается просто как поток тепла, когда Вы смотрите на открытую спираль электроплитки или ИК-обогревателя. Чувствуется дискомфорт – можно и отойти подальше. Отсутствие защиты на станках с СО2 лазерами вполне допустимо. Но оно категорически запрещено на установках с получающими большое распространение волоконными лазерами! Волоконный лазер работает на длине волны порядка 1 мкм, которое, как говорилось выше, легко достигает сетчатки, на уровнях мощности уже в единицы Вт рассеянное излучение очень опасно для глаз, и для таких лазерных установок ограждение рабочего поля с блокировкой ОБЯЗАТЕЛЬНО!!! Вот пример, где это сделано правильно. Все рабочее поле этих станков для резки закрыто стеклом, которое не пропускает рассеянное излучение.

Лазерные маркировщики, граверы также должны иметь обязательно закрытое поле, так как это тоже или волоконные лазеры, или неодимовые лазеры, работающие в режиме модуляции добротности, очень опасные для глаз. Пример, как это должно быть правильно.

А теперь, наглядная картинка как китайцы относятся к нашему здоровью. За такое исполнение лазерного гравера нужно бить по голове палкой, выписывать многомиллионный штраф и лишать права производить эти станки. Ведь покупатель, увидев такой станок без защиты рабочего поля, решит что она и не нужна, раз производитель её не установил. При работе все рассеянное и отраженное излучение, особенно во время гравировки по металлу будет лететь ему прямо в глаза. Если конечно он не надел очки. А я не уверен, что он их наденет. И если он при работе с таким станком получит повреждение сетчатки – то будет иметь полное право подавать иск в суд на производителя и запросто выиграет его, слупив большую сумму денег.

Так что, не покупайте китайский шлак, пользуйтесь правильными средствами защиты и не смотрите в луч оставшимся глазом!

При написании статьи были использованы материалы из следующих источников, помимо бездонных глубин интернетов:

1. Гранкин В. Я. Лазерное излучение, 1977
2. www.repairfaq.org/sam/laserfaq.htm
3. www.laserkids.sourceforge.net

Включили днём на улице лазерный уровень, а луча не видно? Решение есть!

Для работы с лазерным нивелиром не требуется ни каких определённых навыков и умений, с ним с лёгкостью сможет работать даже самый неподготовленный человек.

Многие счастливые обладатели лазерных нивелиров уже оценили неоспоримые преимущества этих приборов при проведении работ по разметке в помещениях.
Но рано или поздно у каждого обладателя лазерного уровня, возникает необходимость провести разметку на улице, это может быть любое строительство на приусадебном участке, в ландшафтном дизайне земельного участка или при строительстве гаража.

Вы включаете прибор на улице в дневное время и с досадой обнаруживаете, что луча совершенно не видно уже на 5 метрах. Да увы, солнечный дневной свет самый губительный для лазера этого класса, но решение есть!

В этом случае Вам несомненно поможет приёмник лазерного луча! У большинства лазерных нивелиров есть клавиша, которая переводит прибор в специальный пульсирующий режим, при котором линии начинаю гореть на порядок тусклее. Именно эта функция позволяет работать с лазерным нивелиром на улице при любой степени освещённости.

Приёмник лазерного луча имеет специальный встроенный фотоэлемент, который улавливает лазерный луч и показывает его местоположение визуальным и звуковым сигналом, в тот момент, когда луча человеческим глазом не видно.Приёмник лазерного излучения – это отдельный не большой прибор, они бывают разного размера, дизайна, с ЖК дисплеем и без. Приёмники лазерного излучения практически не поставляются в комплекте с лазерными уровнями, и приобретаются отдельно. Приёмники идут в комплекте практически с каждым ротационным лазерным нивелиром, это нивелиры предназначенные для работы на большие расстояния до 1000 метров!

Диапазон работы с приёмником у каждого лазерного нивелира (имеющего данную функцию) разный, но минимум начинается от 30 метров!

Поэтому, если Вы задумались или собрались приобрести лазерный уровень, рекомендую перед покупкой сразу определить для себя, потребуется ли производить какие-либо работы на улице при дневном освещении, исходя из этого рассматривать нивелир с функцией или без функции “работы с приёмником”.

Лазерный луч нашептал команды умной колонке за окном

Light Commands

Американские и японские инженеры показали, что лазерный луч можно использовать для передачи голосовых команд умным колонкам и другим устройствам с микроэлектромеханическими микрофонами. Например, они показали это на примере голосового управления Tesla и iPhone. Методика основана на возбуждении колебаний диафрагмы микрофона мощным лазерным лучом, что позволяет передавать команды на большом расстоянии. Описание метода и статья о нем опубликованы на сайте авторов.

Изначально голосовые помощники, такие как Siri и Google Now, использовались в основном для зачитывания фактов из Википедии или прогноза погоды. Впоследствии разработчики превратили их в гораздо более мощный инструмент, позволяющий взаимодействовать со сторонними приложениями и устройствами умного дома, к примеру, даже умными замками. А Google Assistant даже умеет самостоятельно записывать пользователя на прием или отвечать на звонки. Все эти возможности повышают удобство использования голосовых помощников, но вместе с этим делают их привлекательной целью для злоумышленников.

Напрямую взломать голосовые помощники достаточно сложно, да и в таком случае уязвимость с высокой долей вероятности будет быстро закрыта. Из-за этого исследователи ищут альтернативные пути получения доступа к голосовым помощникам. Один из самых оригинальных методов заключается в создании звуков, которые из-за особенностей работы микрофонов или алгоритмов распознаются помощниками, хотя людям они не слышны.

Однако даже при такой атаке злоумышленник должен находиться в непосредственной близости к устройству. Кевин Фу (Kevin Fu) из Мичиганского университета со своими коллегами обнаружил, что незаметные для слуха команды можно удаленно подавать с помощью лазерного луча, частота которого соответствует частоте необходимого звука. Инженеры отмечают, что не могут до конца объяснить механизм, из-за которого микроэлектромеханические микрофоны воспринимают свет подобно звуку, но все же выяснили, что в основе лежит возбуждение механических колебаний, а не фотоэффект.


Авторы провели три эксперимента, во время которых они освещали микрофон лазерным лучом с периодически изменяющейся интенсивностью. В первом эксперименте микрофон был оставлен в исходном виде, во втором инженеры сняли его внешнюю защиту, а в третьем они залили диафрагму прозрачным клеем, тем самым зафиксировав ее и защитив от механических колебаний. С каждым следующим экспериментом интенсивность принимаемого сигнала уменьшалась и в случае с зафиксированной диафрагмой она составила около 10 процентов от исходной. Это косвенно показывает, что природа эффекта основана на возбуждении механических колебаний диафрагмы.

Сравнение интенсивности принимаемого сигнала (напряжения на микрофоне) при различных конфигурациях микрофона

Light Commands

Исследователи опробовали метод в различных конфигурациях. К примеру, они подтвердили его работоспособность на разных умных колонках, смартфонах и даже автомобилях Tesla и Ford, оснащенных системой голосового управления. Кроме того, инженеры показали, что использовать для атаки можно лазеры, работающие как в видимом диапазоне, так и в инфракрасном, что повышает ее скрытность. Наконец, они провели эксперименты на большом расстоянии и в реальных условиях, показав, что атаку можно провести не только в лаборатории.

В одном из экспериментов они установили компактный лазерный излучатель на основе лазерной указки и телеобъектива на башню, расположенную недалеко от офисного здания. В одном из помещений здания недалеко от окна они расположили умную колонку Google Home. Расстояние между лазером и колонкой составляло 75 метров, а мощность излучателя была установлена на уровне 5 милливатт. В результате авторам удалось передать колонке голосовые команды лазером, несмотря на то, что колонка стояла за окном с двойным окном-стеклопакетом.


Оптическую передачу данных с помощью устройств умного дома ранее использовали в обратном направлении. В 2018 году американские исследователи показали, что некоторые умные лампы позволяют передавать данные с помощью периодических мерцаний инфракрасного излучателя в них. Это позволяет незаметно передавать данные через окно даже в том случае, если устройство не подключено к интернету.

Григорий Копиев

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *