8-3842-33-85-00 - магазин жидких обоев

г. Кемерово, Рынок "Привоз" бокс №1

Минераловата характеристики: Минеральная вата | Виды, характеристики, производители, цены

Содержание

виды, их характеристики, свойства и область применения

При выборе утеплителей одним из лидирующих материалов является минеральная вата, характеристики и свойства которой позволяют повысить пожаробезопасность, звуко- и теплоизоляционные параметры объекта. Она имеет натуральный состав, легко монтируется, её срок службы составляет до 50 лет. При этом минвата доступна по цене и выпускается в виде рулонов или плит, что делает её использование экономически выгодным.

Характеристики и свойства минеральной ваты

Выбор в пользу конкретного утеплителя обусловлен их техническими характеристиками и свойствами. Именно от них зависит удобство монтажа и длительность эксплуатации материала. Характеристики минеральной ваты следующие:

  • коэффициент теплопроводности изменяется в пределах от 0,03 до 0,052 Вт/м·К, в зависимости от толщины и плотности слоя;
  • длина волокон составляет от 15 до 50 мм, а их диаметр – 5-15 мкм;
  • максимальная предельная температура эксплуатации от +6000С до +10000С;
  • материал волокон: стекло, горные породы (базальт, доломит и др. ), шлак из доменных печей;
  • ширина плит и рулонов составляет 0,6-1 м, а толщина от 30 до 200 мм;
  • плотность материала от 25 до 200 кг/м3.

К основным свойствам менераловатных утеплителей относятся:

  • гибкость, позволяющая выполнять монтаж на поверхности практически с любой геометрией и формировать герметичные швы;
  • высокая огнестойкость, за счёт которой достаточно легко можно обеспечить контакт нагреваемых конструкций с легко воспламеняемыми материалами;
  • полностью натуральный состав, отсутствие в процессе эксплуатации выделения токсичных или вредных веществ;
  • оптимальная паропроницаемость, не допускающая образования конденсата на поверхности с контактируемым материалом в результате резкого перепада температур;
  • стойкость к биологическим воздействиям: грибку, плесени, грызунам и другим вредителям;
  • звукоизоляционные свойства;
  • гигроскопичность: в результате попадания влаги материал теряет изоляционные свойства, поэтому при монтаже необходимо уложить поверх него качественную гидроизоляцию.
Рулонная минеральная вата

Виды минеральной ваты

Выпускаются следующие виды минеральных ват, характеристики и свойства которых имеют существенные отличия:

  • стекловата;
  • шлаковата;
  • каменная вата;
  • базальтовая вата.

Стекловата

Стекловата является самым дешевым материалом, так как производится из переработанного стекла, песка, извести и химических реагентов в печах при высоких температурах с последующим выдувом под давлением из центрифуги через специальную решетку. Толщина волокон 5-15 мкм, длина от 15 до 50 мм. Из-за содержания формальдегида применяется для утепления нежилых помещений: промышленных цехов, складов, мастерских и т. д.

При монтаже из-за хрупкости стеклянных волокон необходимо использовать индивидуальные средства защиты, чтобы предотвратить их попадание на открытые участки тела или в глаза.

Коэффициент теплопроводности стекловаты варьируется в пределах от 0,03 до 0,052 Вт/м·К. Предельный нагрев, при которых сохраняются все свойства материала, составляет до +4500С. Минимальная температура эксплуатации -600С. При эксплуатации не теряет первоначальный объём и не деформируется.

Стекловата

Шлаковата

Шлаковую вату изготавливают из отходов металлургического производства, а именно – доменных шлаков. По этой причине она имеет остаточную кислотность, из-за которых, при контакте с металлическими поверхностями могут протекать процессы окисления. Кроме того, материал гигроскопичен, что требует применения качественной гидроизоляции.

Толщина волокон варьируется от 4 до 12 мкм, а длина – до 16 мм. Коэффициент теплопроводности – 0,046-0.048 Вт/м·К. Температурный интервал, при котором допускается эксплуатировать материал, составляет от -500С до +3000С.

Технические характеристики минеральной ваты на основе шлаковых волокон не позволяют её эксплуатировать для изоляции труб, утепления фасадов и различных наружных поверхностей. Кроме того, она также, как и стекловата, обладает хрупкостью, поэтому при монтажных работах потребуется применение индивидуальных защитных средств.

Каменная вата

Каменная вата лишена недостатков стекловаты и шлаковаты – не имеет хрупкости, обладает высокой прочностью на разрыв, со временем практически не даёт усадки, выдерживает высокие температуры до +6000С и низкие от -450С. Однако при этом является менее гигроскопичной.

Изготавливается каменная вата из волокон диабаза и габбро диаметром 5-12 мкм и длиной 16 мм. Обеспечивает коэффициент теплопроводности от 0,048 до 0,077 Вт/м·К.

Подходит для контакта с любыми материалами, легко гнётся, не требует использования индивидуальных средств защиты.

Базальтовая вата

Базальтовая вата, как и каменная, изготавливается из габбро-базальтовых волокон с диаметром 5-15 мкм и длиной 20-50 мм, однако не содержит минеральных или связующих добавок. За счёт этого повышается температурный интервал её использования от -1900С до +10000С и обеспечивается самый низкий уровень гигроскопичности, по сравнению с другими минераловатными утеплителями.

Коэффициент теплопроводности варьируется в пределах от 0,035 до 0,039 Вт/м·К. Уровень звукоизоляции составляет 0,9-99 дБ. Материал относится к классу негорючих, благодаря чему может контактировать с нагретыми конструкциями. Срок службы базальтовой ваты составляет до 80 лет.

Базальтовая минеральная вата в форме плит

Марки минеральной ваты и их характеристики

Параметры и характеристики утепления минеральной ваты классифицируются в зависимости от плотности утеплителя следующим образом:

  • П-75;
  • П-125;
  • ПЖ-175;
  • ППЖ-200.

Минвата П-75 имеет плотность 75 кг/м3 и обладает высокой гибкостью. Подходит для теплоизоляции ненагружаемых горизонтальных или с минимальным наклоном конструкций, а также коммуникаций. Применяется также для теплоизоляции кровли, чердаков, потолков, полов по лагам, водопроводных и отопительных труб, вентиляционных каналов.

Минеральная вата П-125 с плотностью 125 кг/м3 отличается от предыдущей марки тем, что обладает отличными звукоизоляционными свойствами, высокой прочностью и оптимальной гибкостью. Основная сфера её применения – утепление газо- или пенобетонных стен, межкомнатных перегородок, фасадов, балконов.

Характеристики видов минеральной ваты с маркировкой ПЖ-175 имеют существенное отличие от обычных утеплителей, благодаря повышенной жёсткости, которая позволяет выполнять монтаж на нагружаемые и вертикальные конструкции. Их плотность составляет 175 кг/м3, обладают отличными звукоизоляционными и минимальными противопожарными свойствами. Укладываются на стальные, деревянные и бетонные плоские поверхности.

Минвата ППЖ-200 имеет плотность 200 кг/м3 и обладает повышенной жёсткостью и отвечает всем требованиям негорючих материалов по противопожарной безопасности. Используются для утепления промышленных, складских и торговых объектов. Монтаж возможен только на плоские поверхности со статическими нагрузками, так как плиты имеют минимальную гибкость за счёт использования армирующего внутреннего слоя.

Базальтовая фольгированная вата в рулоне

Критерии выбора минеральной ваты

При выборе подходящего типа минераловатного утеплителя рекомендуется опираться на следующие критерии:

  • коэффициент теплопроводности и толщину материала;
  • плотность листов, характеризующие нагрузку на утепляемые конструкции;
  • показатели гигроскопичности;
  • тип поставки материала: рулоны или плиты;
  • звукоизоляционные свойства;
  • тип волокон и наличие в составе вредных химических компонент;
  • прочность на разрыв и гибкость для утепления поверхностей сложной формы.

Опытные специалисты дают следующие рекомендации и советы по выбору качественной минеральной ваты:

  • несмотря на дороговизну продукции брендовых производителей, рекомендуется использовать именно её, так как она обладает гарантированными характеристиками и, самое главное, имеет заявленную долговечность;
  • выбор рулонов или плит зависит от типа и сложности работ по утеплению, но всегда должен сводиться к получению минимального количества стыковочных швов;
  • от материала с волокнами, расположенными горизонтально или вертикально по длине, лучше отказаться в пользу с хаотичными, так как он обладает большей прочностью;
  • стоимость ваты определяется не только типом волокон, а и их плотностью, поэтому важно в первую очередь изучать технические характеристики, а не смотреть на цену;
  • нужно находить оптимальный вариант для получения достаточного уровня теплоизоляции и при этом не перегружать несущую конструкцию;
  • для утепления жилых домов следует подбирать минвату с минимальным содержанием формальдегидных смол;
  • утеплитель даже с минимальным уровнем гигроскопичности необходимо гидроизолировать, чтобы максимально продлить срок его эксплуатации, поэтому заранее нужно внести соответствующие изменения в смету затрат;
  • перед покупкой важно убедиться в соответствии материала заявленным характеристикам: размеру листов, толщине, гибкости, сохранению формы.
Продукция брендовых производителей обладает гарантированными характеристиками

Кроме того, для удобства монтажа важно подбирать минеральную вату по жёсткости, которая позволит плотно стыковать её с обрешёткой, исключать появление воздушных пазов, зазоров и других дефектов. На данный параметр может влиять не только толщина слоя, а и наличие фольгированного слоя или армирующих волокон.

Качественно по жёсткости можно выделить следующие типы минваты:

  • мягкие, применяемые для изоляции трубных коммуникаций (дымоходов, труб) или кровельного пирога;
  • полужёсткие, используемые для наружной теплоизоляции фасадов и в качестве среднего слоя в сэндвич-панелях;
  • жёсткие, предназначенные для изоляции плоских металлических или деревянных поверхностей стен, полов, потолков, кровель и т. д.
Мягкая минеральная вата применяется для изоляции трубных коммуникаций

При подборе материала с подходящим коэффициентом теплопроводности следует руководствоваться следующими критериями:

  • данными о средних температурах в зимний и летний периоды в конкретном регионе;
  • толщине стен здания и теплопроводностью материалов, из которых они были возведены.

Обычно при покупке материалы приобретают с небольшим запасом по параметрам. Однако при этом важно не забывать про экономическую выгоду от получения реальных теплоизоляционных свойств по сравнению с требуемыми и не допускать переплат.

Преимущества и недостатки минеральной ваты

Независимо от конкретного вида и характеристик, минеральная вата обладает рядом следующих преимуществ:

  • простота монтажа на любые типы материалов, применяемых в строительстве объектов;
  • повышенная стойкость к химическим веществам;
  • сохранение всех свойств в течение минимум 30 лет;
  • минимальная усадка (1-5%, в зависимости от типа волокон) за весь период эксплуатации;
  • повышенная огнестойкость и пожаробезопасность;
  • лёгкость обработки;
  • допустимость установки в любых типах помещений с оптимальным уровнем влажности;
  • минимальный коэффициент теплоизоляции;
  • паропроницаемость, предотвращающая накопление капель конденсата на поверхности контакта с другими материалами;
  • относительно невысокая стоимость.

К недостаткам минераловатных утеплителей следует отнести:

  • гигроскопичность: при накоплении влаги безвозвратно теряются все свойства;
  • выделение при нагреве формальдегида и соединений на его основе;
  • вредность мелких волокон, попадающих в органы дыхания и зрения.

Области применения

Применение минеральной ваты на основе подбора характеристик допустимо в следующих целях:

  • теплоизоляции фасадных стен;
  • изоляции нагретых коммуникаций, печей, дымоходов и производственного оборудования;
  • утепления кровельного пирога, стен, полов, потолков, перекрытий;
  • изоляции холодильных установок;
  • в качестве звукоизолирующего материала.

Несмотря на то, что в составе утеплителя есть небольшое количество формальдегидных соединений, их концентрация не представляет опасности для здоровья людей. Главное, полностью соблюдать все требования технологии монтажа, чтобы минимизировать влияние влаги и исключить прогрев выше допустимых пределов.

Использование минваты отдельно в качестве звукоизоляционных материалов не является выгодным, однако в виде дополнительного свойства к теплоизоляции – весьма выгодным вложением финансовых средств. В некоторых случаях, например, при утеплении фасада, для создания оптимальной акустической обстановки внутри помещений, не потребуется укладка слоя звукоизоляции.

При сравнении срока службы минваты с аналогами оказывается, что они примерно одинаковы. При этом волокнистые утеплители пожаробезопасны и не выделяют токсических веществ при эксплуатации в разрешённом температурном режиме. Кроме того, их легче транспортировать и укладывать.

Минеральная вата – утеплитель, характеристики которого ничуть не уступают другим типам теплоизоляционных материалов, является наиболее востребованным при строительстве и ремонте различных объектов. Волокнистая структура из различных минеральных пород обладает различными свойствами и различается по стоимости, что позволяет подобрать наиболее выгодный вариант для монтажа.

Минеральная вата – многофункциональный материал с уникальными свойствами

Минеральная вата – это волокнистый материал, который получают из расплавов горных пород, а также металлургических шлаков и их смесей. Чаще всего мировые производители минераловатной продукции используют в качестве сырья горные породы. Благодаря этому минвата получается высокого качества, ее можно эксплуатировать достаточно долго. Когда необходима долговечная и надежная работа зданий и строений, применяют именно ее.

Минеральная вата, которую получают из доменных шлаков, недостаточно долговечна в условиях перепадов температур, действия нагрузок и деформаций, повышенной влажности. Поэтому она успешно применяется в дачном строительстве, а также при постройке временных сооружений.

Минеральная вата обладает уникальными свойствами:

• Огнестойкость. Негорючесть минваты достигается благодаря использованию при производстве негорючих силикатных расплавов горных пород. Даже при высоких температурах не происходит деформации минераловатных плит, сохраняются все свойства. Материал сопротивляется распространению горения при пожаре, именно поэтому минеральную вату используют для утепления помещений, где хранятся различные огнеопасные вещества. Ее применяют даже в условиях длительного контакта с высокой температурой, правда, без дальнейшего механического воздействия. Это свойство получается благодаря разнице температуры плавления каменных волокон и используемого в составе связующего.

• Биологическая и химическая стойкость к различным агрессивным веществам, невосприимчивостью к грибкам и воздействию грызунов. При этом минеральная вата полностью соответствует действующим санитарно-гигиеническим нормам и стандартам качества.

• Незначительная степень термической, а также естественной усадки. Размеры и формы материалов из минеральной ваты не меняются за все время эксплуатации. Это помогает исключить прохождение холода в стыковых местах. Такое происходит, когда материал усаживается со временем.

• Негигроскопичность. Способность материала препятствовать проникновению влаги достаточно высока. Так уровень поглощения воды составляет около 0,5%, что значительно ниже, чем у других материалов. Чтобы свести риск проникновения влаги в материал до минимума, производится и хранится он в сухих помещениях либо пропитывается водоотталкивающими веществами.

• Паропроницаемость. Это свойство незаменимо при создании микроклимата в помещении и регулирования уровня влажности. Благодаря паропроницаемости материала возможно беспрепятственное удаление водяных паров и конденсата.
• Стабильность объема и формы в любых условиях.

• Низкая теплопроводность. Этот материал отличается высоким термическим сопротивлением. Так для обеспечения такого же значения что и у 10 см минеральной ваты плотностью 100 кг/м.куб. потребуется 25 см сухой древесины, 200 см силикатного кирпича, 117 см пустотного керамического.

Это свойство помогает сэкономить средства при ремонте.

Теплопроводность минеральной ваты зависит от геометрии волокон материала. Также направление волокон влияет и на прочность. Идеальным выбором является материал с хаотично направленными волокнами.

• Высокая звукоизоляция. Минеральная вата является прочной преградой для звуковых волн.

• Высокая прочность и коррозийная устойчивость. Качественная минеральная вата является химически неактивной средой и не вызывает коррозию соприкасающихся с ней металлов. Чем больше вертикальных волокон в материале, тем выше его прочность. При наличии большого количества волокон такого типа можно использовать и менее плотное покрытие.

• Экологичность. Материал абсолютно безопасен и безвреден для человека.

• Легкость монтажа. Любую минеральную вату легко резать для придания нужной формы: мягкую – ножом, а более плотную – ножовкой. Ее можно легко разместить на любой поверхности с различной конфигурацией, так как она легко приобретает любую форму.

• Долговечность. Срок службы минеральной ваты при условии правильной эксплуатации составляет не менее 70 лет. Такая долговечность достигается благодаря применению горных пород базальтового камня.

Минеральная вата от ТехноНИКОЛЬ: одни плюсы

Огромное количество положительных свойств материала делает его одним из наиболее популярных утеплителей на рынке строительных материалов. Нелегко соревноваться со столь недорогим материалом, обладающим огромным списком достоинств.

Компания «ТехноНИКОЛЬ» предлагает широкий выбор тепло- и звукоизолирующих материалов из минеральной экологичной ваты. Наши специалисты готовы помочь вам с подбором того утеплителя, который подойдет под вами запрос.

Вы можете купить теплоизоляцию за наличный и безналичный расчет. Мы предоставляем индивидуальный подход каждому клиенту. Кроме того, у нас действует гибкая система скидок для постоянных и оптовых клиентов.

Помните: правильный выбор утеплителя решит многие проблемы на долгие годы, сэкономит ваше время и деньги, создаст уют и комфорт в вашем доме.

Не экономьте на профессиональной консультации и монтаже: потраченные средства обязательно оправдают себя.



 
Минераловатная плита
Звукоизоляция квартиры
Утепление стен и фасадов


Применение минеральной ваты | Строительный портал

Среди большого количества теплоизоляционных материалов, минеральная вата занимает особое место. Ее популярность объясняется прежде всего низкими показателями тепловой проводимости, экологической безопасностью, стойкостью перед грибком и плесенью и т.д. Об особенностях применения минеральной ваты, рассмотрим далее.

Оглавление:

  1. Минеральная вата — составляющие вещества и производство
  2. Минеральная вата — характеристики и достоинства
  3. Применение минеральной ваты в качестве теплоизоляционного материала
  4. Утеплитель минеральная вата: разновидности и описание
  5. Технология утепления фасада минеральной ватой

Минеральная вата — составляющие вещества и производство

Материал в основе которого лежит тонкое неорганическое волокно, принято называть минеральной ватой.

Для соединения волокон между собой используют вещества в виде синтетического клея. В соотношении с главным составляющим минеральной ваты, она бывает трех типов:

  • синтетического;
  • шлакового;
  • базальтового.

Существуют определенные мировые стандарты, согласно которым осуществляется технологический процесс производства каменной ваты.

Рассматривая особенности и характеристики данного материала, следует прежде всего отметить низкую тепловую проводимость и стойкость перед возгоранием и распространением огня. Из-за частого переплетения волокон между собой внутри ваты образуются воздушные поры, которые обеспечивают низкий уровень теплопроводности. Из-за небольшой плотности, внутри ваты присутствует воздух, который сохраняет тепло, внутри ваты, не подавая его наружу. Большое количество волокон, которые переплетаются между собой в хаотичном порядке, являются основой для производства каменной ваты.

При этом, данные волокна имеют твердую, природную или неорганическую текстуру. Общий процесс производства каменной ваты основывается на разогреве исходного материала до определенной температуры, и вытягивание с него тонких нитей, определенным механическим устройством. Связующее вещество помогает соединить между собой мельчайшие волокнистые нити и придает им определенную форму.

Минеральная вата — характеристики и достоинства

Волокна минеральной ваты могут располагаться в хаотичном порядке, поэтому ее структура определяется составом исходного сырья. Различают несколько вариантов минеральной ваты:

  • с горизонтальным направлением волокон;
  • с вертикальным направлением волокон;
  • гофрированного типа;
  • пространственного типа.

Выбор того или иного варианта утеплителя зависит от сферы и места его применения. Каменная вата отличается стойкостью перед высокой температурой. Этим также объясняется высокий уровень ее пожарной безопасности. Данный материал не склонен к процессу горения, не воспламеняется, хорошо переносит тепло.

Минеральная вата отличается стойкостью к агрессивной среде и химическим компонентам разного состава, это свойство значительно расширяет места ее использования. Высокая популярность минеральной ваты объясняется такими ее характеристиками как высокие теплоизоляционные и звукоизоляционные показатели.

Самым популярным местом применения минеральной ваты является утепление стеновых перегородок, перекрытий и разного рода конструктивных элементов. Кроме того, с помощью минеральной ваты осуществляется утепление печей, трубопроводов, поверхностей, которые подвергаются воздействию повышенного температурного режима.

Утепление минеральной ватой отличается такими плюсами:

  • низким уровнем тепловой проводимости, который делает ее довольно популярным материалом на рынке утеплителей;
  • минеральную вату относят к негорючим материалам, а потому ее применение снижает риск возникновения пожара в доме;
  • прочность перед сжатием и механическими воздействиями обеспечивает длительный срок эксплуатации минеральной ваты и возможность ее применения даже для утепления фундаментов и мест, которые подвергаются постоянной нагрузке;
  • прочность к разрыву делает минеральную вату незаменимым утеплителем в процессе утепления фасадных поверхностей;
  • низкий уровень влагопоглощения обеспечивает материалу длительный срок использования, так как из-за того, что каменная вата не удерживает, и не поглощает влагу, на ее поверхности не развивается грибок и плесень;
  • обеспечение качественной звуковой изоляции достигается из-за того, что волокна переплетены между собой в хаотичном порядке, минеральная вата также применяется в процессе звуковой изоляции студий звукозаписи;
  • стойкость перед высокой температурой, под воздействием тепла и холода, минеральная вата не деформируется не теряет своих характеристик;
  • биологическая стойкость и хорошие показатели антисептичности делают минеральную вату довольно популярным и востребованным строительным материалом, не только в отрасли утепления;
  • экологическая безопасность материала позволяет использовать его для утепления детских комнат, санаторно-курортных и медицинских учреждений;
  • легкость монтажа — еще одно очень весомое преимущество, минеральная вата выпускается в разных формах, поэтому выбрав нужную из них, она легко монтируется на любую поверхность.

Однако, следует учесть такой факт, что использование некачественного материала, может привести к нанесению вреда для здоровья человека. Согласно зарубежным исследованиям, минеральная вата, может отличаться наличием в ее составе вредных веществ и связывающих смол. Данные вещества, выделяясь в окружающую среду, негативно воздействуют на слизистые оболочки человека, такие как глаза, кожа или органы дыхания.

Поэтому, не рекомендуется использовать минеральную вату для утепления жилых помещений внутри комнат. Наличие фенола в ее составе отрицательно сказывается на здоровье людей, особенно при отсутствии нормальной системы кондиционирования и вентиляции.

Применение минеральной ваты в качестве теплоизоляционного материала

Минеральную вату используют для утепления как внутренних, так и внешних участков здания. Форма ее выпуска бывает разной, как рулонной, так и плитной. Выбирая минеральной ваты размеры, следует учитывать такие характеристики:

  • место установки материала;
  • климатические условия региона;
  • дополнительные тепловые потери.

От плотности минеральной ваты зависит отрасль ее использования. Материал с более жесткими характеристиками используется для внешней теплоизоляции. С его помощью удается обеспечить не только изоляцию, но и защиту, фасада, кровли, цоколя, от внешних факторов. На горизонтальных участках, возможно использование материала с более низкой плотностью.

Различают два вида проведения теплоизоляции:

  • промышленная;
  • техническая.

Первый вариант используется в том случае, если температура воздействия на материал превышает 900 градусов тепла.

Предлагаем подробнее ознакомиться со сферой изоляции минеральной ватой:

  • не нагруженная изоляция на любого рода конструкциях и зданиях, установленная, как в вертикальном, так и в горизонтальном и наклонном положении;
  • утепление по штукатурному типу;
  • теплоизоляция для навесных фасадов вентилируемого типа;
  • внутреннее утепление различного рода оградительных конструкций;
  • в системе сэндвич панельных конструкций, панелей из бетона, слоистой укладки;
  • тепловая изоляция промышленной отрасли, изоляция водопроводов, дымоходов, печных конструкций, металлургии и нефтехимии;
  • нижний слой теплоизоляции в плоских кровельных конструкциях;
  • теплоизоляция стеновых и потолочных перекрытий в бане или сауне.

Утеплитель минеральная вата: разновидности и описание

Как говорилось ранее, минеральная вата бывает трех видов:

  • стекловата;
  • каменный утеплитель;
  • шлаковый утеплитель.

Для производства первого варианта используют вещества в виде песка, буры, известняка и соды. Все компоненты помещаются в специальный резервуар, где производится их перемешивание и расплавление. При этом, температура нагрева достигает 1410 градусов. Далее следует процесс пропуска полученного стекла через поверхность фильеров и попадает в механизм раздувания ее на мельчайшие волокнистые элементы, с помощью которых и формируется утеплитель.

Данный процесс осуществляется при воздействии на волокна специального клеящего состава. Для того, чтобы между волокнами образовалась определенная связь, материал подвергается обработке при температуре около 240 градусов. Далее следует процесс нарезки и упаковки ваты, в соотношении с ее размерами. У минеральной ваты толщина определяется также сферой и местом ее использования.

Среди плюсов данного материала отметим:

  • отличную теплопроводность;
  • хорошую звукоизоляцию;
  • высокую стойкость к химическим веществам;
  • стойкость к горению и тлению;
  • отсутствие усадки;
  • звукопоглощение;
  • высокие прочностные характеристики.

Среди недостатков данного материала отметим высокий уровень ломкости ее волокон, необходимость работы с материалом, исключительно в маске и специальной одежде, низкий уровень термической устойчивости.

Минеральная базальтовая вата — еще называется каменной. Для ее изготовления используется камень горных пород. Данное сырье расплавляется под температурой около 1500 градусов, превращается в волокнистые вещества и соединяется между собой клеевыми составляющими.

Среди плюсов минеральной ваты на базальтовой основе отметим:

  • отличную теплопроводность минеральной ваты;
  • хороший уровень звукового поглощения;
  • высокий уровень термической стойкости;
  • длительность эксплуатации;
  • стойкость перед усадкой;
  • влагостойкость;
  • химическая нейтральность;
  • легкость работы с материалом, по сравнению со стекловатой.

Однако, в составе данного материала присутствуют вредные для здоровья человека вещества, которые во время ее нагрева до температуры около 600 градусов, начинают выделяться в окружающую среду и пагубно сказываются на здоровье людей.

Для производства шлаковаты используют отходы металлургического производства. Данный материал, пожалуй, отличается единственным достоинством — низкой стоимостью. Однако, недостатков у шлаковаты гораздо больше. Среди них отметим:

  • низкий температурный режим использования материала, который составляет более 250 градусов;
  • низкая теплопроводность;
  • срок использования материала составляет не более пятнадцати лет;
  • высокий уровень влагопоглощения;
  • наличие очень хрупких и ломких волокон.

Если использовать шлаковату с металлическими поверхностями, то при контакте с водой, она начинает окисляться и приводить к их коррозии.

Технология утепления фасада минеральной ватой

Перед началом работы следует подготовить поверхность фасада к утеплению. Для этого, с него снимают все дополнительные и ненужные элементы, которые будут препятствовать фиксации минеральной ваты на его поверхности. Если на стенах имеются участки, на которых отслаивается штукатурка или краска, то они нуждаются в дополнительном ремонте. Далее следует выполнить грунтовку стен.

После этого на стены крепится направляющий профиль, с его помощью удается поддержать первый ряд минеральной ваты, который укладывается на поверхность стены. Для фиксации металлического профиля на стене используют дюбеля. При этом, в обязательном порядке, между профилем и землей, оставляют интервал в полметра.

Для того, чтобы надежно зафиксировать утеплитель на фасадной поверхности, рекомендуем воспользоваться специальным клеем. Теплоизоляция минеральной ватой подразумевает использование сухого клея, который перед началом работы разводят водой. Пропорции и соотношение клеящего вещества и воды, смотрите в инструкции. Следите за тем, чтобы состав был однородным. Клей наносится непосредственно на плиты минеральной ваты. Далее они плотно прижимаются к стене.

Совет: До схватывания клея, плита должна принять определенное положение. После укладки первого ряда, сразу же начинайте монтаж второго.

Учтите, что стыки между плитами минеральной ваты должны напоминать кирпичную кладку. После приклеивания материала, следует процесс их фиксации крепежами. Для этих целей используют специальные дюбеля, имеющие форму грибка.

После укладки и фиксации всех плит, производится их армирование клеящим составом и стеклосеткой. Использование специального уголка поможет армировать угловые участки плит. Далее следует процесс заштукатуривания стен.

Если после утепления фасада, он будет отделан сайдингом, то перед укладкой минваты устанавливается специальная пленка в виде изоспана. Она поможет избежать воздействия влаги на утеплитель. Для фиксации плит будут использоваться только крепежи, но не клеящий состав. Далее следует еще один слой изоспана, а между сайдингом и утеплителем оставляется зазор.

Минеральная вата и его характеристики: размеры, плотность, вес

В зависимости от сырья и методик производства, минеральная вата имеет различные структуры волокон. Материал легко разрезается и монтируется к поверхности, и имеет незначительный процент присадки. В составе содержатся базальты и большие волокна, способные выдерживать высокую температуру в 1000 С.

Применение

1. Монтаж теплоизолирующего покрытия в плоских кровлях и многоуровневых слоях.

2. Теплоизоляция трубопроводных коммуникаций, резервуаров, газопроводов и технического оборудования во многих производственных отраслях.

3. Утеплитель в 3 — слойных сэндвич панелях, а также бетонных или железобетонных материалах.

4. Ненагруженная изоляция в ограждающих строениях.

5. Наружное утепление мокрого типа.

6. Теплоизоляция вентилируемых фасадных конструкций.

7. Заполнитель входных дверей.

Виды минеральной ваты

1. Каменная.

2. Шлаковая.

3. Керамическая.

4. Стеклянная.

Все виды имеют хорошую огнеустойчивость. Наибольшей популярностью пользуются стеклянная и минеральная вата. В основе каменной минваты содержаться породы базальтовых групп с примесью металлургических веществ. Структура стеклянной ваты наполнена стекловолокном, с применением кварцевого песка и веществ старого стекла.

В качестве связующих компонентов в 2 случаях применяется фенолформальдегидная смола. По данным исследованиям, это вещество способно нанести вред здоровью человека. Но в сравнении с популярным материалом ДСП, имеющий в своём составе те же смолы, его количество меньше в 20 раз.

Типы минеральной ваты

1. Пространственная.

2. Гофрированная.

3. Вертикально слоистая.

4. Горизонтально слоистая.

К основному компоненту в составе материала относится базальт. Он выступает в качестве связующего вещества, в роли которого могут быть карбамидные смолы, битум, фенолоспирты, глина и крахмал.

В процессе изготовления минваты на основе пород расплавленных минеральных материалов получаются тонкие волокна в 1–3 микрона с толщиной в 50 мм. Для улучшения прочности, в расплавленные базальтовые волокна может добавляться расплав шихты или известняка. Вещества минваты отталкивают влагу, защищая тем самым теплоизоляционные качества.

Коэффициенты теплопроводности

Все прочные компоненты поэтапно подвергаются разогреву, а после охлаждению, с соблюдением интервалов, температурного режима внутренней структуры и поверхности материала. Теплоизоляционные качества минваты демонстрируются коэффициентом теплопроводности. Наименьшее его значение обеспечивает максимальное сохранение теплопроводности. Зачастую значения коэффициента предварительно указывается изготовителем. Значение коэффициента определяется в лабораторных условиях.

Показатели тепловодности варьируются около 0,032 Вт/(м*К). Последний показатель встречается только в высококачественных утеплителях.

Термическое сопротивление

На теплоизоляционные характеристики также влияет сопротивление теплопередачи. Значение учитывает и толщину минваты. Уровень термического сопротивления так же как и коэффициент теплопроводности, указывается на упаковке. Но чем выше этот показатель, тем качественнее его теплоизоляционные качества.

Этот коэффициент рассчитывается как толщина какого-либо типа минваты, делённая на уровень теплопроводности.

Плотность

Величину плотности определяют количество задействованных волокон. Высокая плотность минваты достигается за счёт увеличения расходного материала. Показатели определяются весом 1-м3 изделия. Различные производители демонстрируют продукцию различной плотности. Для каждого уровня используются различные технические процессы.

Для утепления многоэтажных жилых строений применяется минеральная вата с показателями 35 до 40 кг/м3. Материалы с более высокими показателями принято использовать для отделки объектов производственного значения.

Разработаны специальные формулы благодаря которым профессионалы правильно вычитывают плотность материала, которая необходима для монтажа качественной теплоизоляции конкретного строения. Существуют разнообразные виды минеральной ваты имеющие различные показатели прочности, каждый из которых предназначен для решения конкретной задачи.

Характеристики позволяют успешно использовать материал для теплоизоляции стен, холодильных конструкций, системы перекрытий в индустриальных и жилых зданиях. Показатели плотности слоев около 100 до 200 кг/м3, минеральных волокон около 100–150 кг/м3, уровень плит средней жесткости варьируется в пределах 70–300 кг/м3.

От плотности изделия зависит распределенная нагрузка, с которой может справиться материал. Для монтажа гидроизоляции горизонтальных плоскостей применяется минеральная вата в рулонах с плотностью в 30-50 кг/куб.м. С целью гидроизоляции технических строений следует использовать плиты средней жесткости с плотностью 75 кг/куб.м, в то время как для монтажа гидроизоляции мансард идеально подходит минеральная вата с плотностью в 175-200 кг/куб.м.

Размеры минеральной ваты

Производители представляют минвату 3 видов, каждый из которых имеет свой тип сырья, а именно

1. Стеклянная.

2. Шлаковая.

3. Базальтовая минвата.

Все виды успешно применяются в целях гидро и теплоизоляции различных жилых и промышленных зданий. Для более комфортного монтажа, производители выпускают изделия различных размеров и форм.

Листы

Минеральная вата закатанная в рулоны производится в виде большой заготовки, предварительно нарезанной и укомплектованной. Размеры материала указываются на упаковке, так как у многих производителей они различны. Толщина может варьироваться от 40 до 200 мм, ширина от 565 до 610 мм, длинна около 1170 мм. Толщина жёстких плит для гидро и теплоизоляции варьируется около 50–170 мм, ширина изделия около 1190 мм, длинна -1380 мм.

Рулонный материал

Минеральная вата в таком формате идеально подходит для теплоизоляции больших территорий, так как в рулонах содержатся большое количество материала. Как правило, ширина материалов варьируется в пределах 50–200 мм, длинна листа около 7000–14000 мм, а ширина приблизительно 1200 мм. Материал легко раскроить и подогнать под размеры помещения.

Минеральная вата в цилиндрах

Предназначена для гидроизоляции гидравлических магистралей. В основу минваты этого вида входят: фольга, стеклосетка и базальт. Структура выдерживает высокие температуры до 250 С. Ширина изделия в основном варьируется в пределах 12–324 мм, длинна около 1200 мм, с толщиной в 20–80 мм. Точные размеры расписаны на упаковках материала. Минвата в цилиндрах предназначена для теплоизоляции теплообменных систем и отопительных коммуникаций. Диаметр, толщина и длинна подбираются в соответствии с размером труб

Вес

Масса минваты изменяется в зависимости от наполняющих её веществ. Чтобы определить с каким весом строитель будет иметь дело, следует обратить внимание на плотность материала, которую можно узнать также как массу минваты из расчёта 1 кубический м. Этот показатель может варьироваться от 35 до 100 кг на 1-м куб. Масса утеплительных плит в среднем составляет 0,6 вкм. В процессе выполнения технических операций вес не оказывает существенной роли.

Продукция производителей имеет различный вес, в среднем этот показатель варьируется от 37 до 45 кг при размерах не более 1,35 кг, и зависит от плотности теплоизоляционного материала. Её вес значительно изменяется при комбинированном подходе к утеплению. В таком случае решающее значение оказывает толщина применяемого утеплителя.

Состав

Каменная вата имеет волокнистую структуру, по составу напоминающая базальт. Он считается натуральным природным материалом, на 80-й процент состоит из земной коры, а сама вата производится из расплавов вулканических пород.

Бальзаковское волокно производится в заводских условиях, но его состав также схож с химической структурой горных пород. Также содержатся песок, сода, известняки, бура и доломит. В готовом виде материал имеет внушительные размеры и пронизан воздухом насквозь. Для хранения и транспортирования, минвата спрессовывается до шестикратного состояния.

Многие производители стараются улучшить качество изделия, внося изменения в состав и процесс производства. Для повышения жёсткости, плиты подвергаются прошиванию, пропитываются битумом и фенолами с добавлением асбеста. Если в составе имеются дополнительные вещества, это может изменить характеристики изделия. Битум предотвращает от поражений насекомыми и грибком, защищает изделие от влаги и обеспечивает дополнительную прочность.

ГОСТ

Официальный стандарт распространяется на каменную вату, изготавливаемую из веществ горных пород габбро-базальтовой группы, а также их идентичных веществ, осадочных пород, вулканических, металлургических остатков, производственных силикатных шлаков, сплавов предназначенных для производства теплоизоляционных, звукоизоляционных и звукопоглощающих материалов.

Каменная вата может использоваться в качестве теплоизоляционного вещества в строительной индустрии и промышленном производстве для отделки поверхностей с температурным режимом от -180 С до +700 С.

Срок службы

По заявлениям производителей, минеральная вата может прослужить до 50 лет, с сохранением всех свойств и качеств. Однако долгий срок службы обеспечивает изолирующий слой в конструкции дома. Некоторая часть изолятора уже наделена защитными противоветровыми и пароизоляционными качествами, но если применяется материал без него, строителю следует самостоятельно его установить. После проникновения влаги, структура начинает саморазрушаться, а её волокна постепенно начинают осыпаться.

Вред для здоровья

Многие эксперты убеждены в негативном влиянии минеральной ваты для здоровья. Для изготовления минваты производители применяют фенольные смолы, так как это обеспечивает ей хорошую влагостойкость.

Но по заявлениям врачей, частички фенольных смол способны выделять вредные вещества формальдегид и фенол. Врачи считают, что волокна пыли задерживаются в лёгких человека становясь причиной различных заболеваний.

Наибольшую опасность причиняют частицы от 3–5 микрон. Входящие в её состав связующие вещества вызывают у людей серьёзные заболевания связанные с органами дыхания, кожи и глаз.

Но несмотря на это большинство производителей не перестают настаивать на безопасности теплоизоляционного вещества. Строительные компании также отдают предпочтению каменной вате, и продолжают её использовать для возведения новых построек.

Многие зарубежные и российские компании отказываются от использования минваты на строительных объектах. Происходит это из-за широкого распространения и небольшой стоимости, а также из-за вреда, которая она оказывает на здоровье человека.

Характеристики материала создают благоприятную среду для грызунов, грибка, гнилостных бактерий и плесени. Длительное проживание в подобных условиях смогут развить удушье, аллергические заболевания и кашель.

Минеральная вата имеет довольно разноплановые характеристики, и уже много раз она подвергалась различным испытаниям. Благодаря результатам исследования, производителям удалось доказать ценность минеральной ваты в строительной индустрии.

Несмотря на недостатки, утеплитель обладает хорошей теплоизоляцией, пожаробезопасный и имеет хорошие акустические качества. Он часто применяется для утепления фасадов зданий, стен, крыш, а также чердаков и межкомнатных перегородок.

Негорючие вещества позволяют использовать его в виде пожаробезопасной изоляции, так как материалы из минваты, достаточно эффективно препятствуют распространение пожара и не могут выделять вредных токсичных веществ находясь в огне. Минвата состоит из волокон, по своей природе отталкивающие воду. Специальные добавки значительно увеличивают её качество, именно благодаря характеристикам ей удалось стать всемирно популярной.

Видео о производстве минеральной ваты:

виды, характеристики, свойства — vipremontclub.ru

Выбирая утеплитель, а одновременно звукоизоляцию, для потолка или стен, начинающий ремонтник может растеряться: минеральная вата или пенопласт, пеноизол или пенополиуретан? Большинство застройщиков, да и простых граждан, останавливают свой выбор на самом «теплом» материале  –вате, пусть и минеральной.

Что же это такое?

Минеральная вата по ГОСТу – это волокнистый материал на синтетическом связующем, изготавливаемый из минералов базальтовой группы. Выпуск минваты (МВ) осуществляется при температуре плавления исходного сырья около 800о С, поэтому такой утеплитель не поддерживает горения, обеспечивая пожаробезопасность.

Современную минеральную вату на синтетическом связующем можно считать натуральным материалом, потому что технологический процесс ее изготовления похож на естественный взрыв вулкана. В природе расплавленный при температуре 1500о С природный базальт в виде лавы выбрасываются с большой силой из жерла, образовывая волокнистые клубы, которые, падая на землю, охлаждаются и формируют волокна, напоминающие по внешнему виду потрепанную базальтовую минеральную вату.

На предприятиях, где производят такой утеплитель, как минеральная вата, в основном применяют базальтовые породы вместе с известняковыми камнями. После нагревания, глажки, формировки получают плиты теплоизоляционные, маты из минеральной ваты, рулонные материалы и другие типы теплоизоляционных изделий (войлок, гранулы, «сегменты», «скорлупа» и др.).

Виды минеральной ваты

Термин «минеральная вата», в зависимости от исходного сырья, включает несколько разновидностей, согласно ГОСТу «Материалы и изделия теплоизоляционные»:

  •  Стеклянная вата (стекловата), которую получают из отходов стеклянной промышленности. Такая волокнистая минеральная теплоизоляция обладает повышенной упругостью, высокой химической стойкостью, отличной прочностью. Имеет светло-желтый цвет. К недостаткам стекловаты относится повышенная ломкость волокон, которые попадая в одежду, трудно удаляются, вызывают зуд. Очень опасно вдыхание мелких, острых обломков, попадание их в глаза, поэтому работать со стекловатой нужно в плотно прилегающей спецодежде.

  • Шлаковая вата производится из расплава металлургического шлака с последующей переработкой в стекловидный волокнистый материал. Находит применение в виде готовых теплоизоляционных плит, матов прошивных из минеральной шлаковой ваты, созданных на синтетическом связующем.
  • Каменная вата – разновидность минваты, отличная звуко- и теплоизоляция, производимая из расплавленной горной породы (габбро-базальтовой группы). Базальтовая минеральная вата – экологичный материал, на 95 % состоящий из натурального камня, является негорючим и паропроницаемым, может быть любого оттенка: от коричневато-желтого до зеленоватого.

Свойства и характеристики минеральной ваты

Получаемый промышленным методом волокнистый утеплитель (минвата) по своим качествам похож на асбестовое волокно. Базальтовая минеральная вата характеризуется прочностью, высокой устойчивостью к большим температурам, к действию органических веществ (масел, щелочей), химических реактивов, она обладает прекрасными тепло- и звукоизоляционными свойствами.

Утеплитель в виде базальтовой минваты обладает превосходными водоотталкивающими свойствами. При попадании влаги на поверхность такой теплоизоляции, она не сможет проникнуть в ее толщу, поэтому МВ остается сухой, сохраняя высокие теплозащитные показатели.

Независимо от плотности или толщины минеральной ваты, она обладает высокой паропроницаемостью. Водяные пары легко проходят сквозь такую теплоизоляцию, оставляя ее сухой и не конденсируясь внутри материала.

Базальтовый утеплитель из МВ, обладая низкой теплопроводностью, гарантирует прекрасные акустические свойства: он способен улучшать воздушную звукоизоляцию помещения, снижать звуковой уровень в соседних комнатах.

При  утеплении минеральной ватой можно быть уверенным в обеспечении пожарной безопасности, благодаря тому, что базальтовый утеплитель – это негорючие вещество. Такая теплоизоляция эффективно препятствует распространению пламени, может использоваться даже в качестве огнезащиты при температурах до 1000о С.

Минеральная вата, характеристики которой позволяют использовать ее практически без ограничений, находит применение при:

·         утеплении фасадов

·         звуко- и теплоизоляции кровли

·         утеплении стен, перегородок, а также полов

·         каркасном строительстве

·         теплоизоляции трубопроводов и т. д.

При покупке «правильного» утеплителя обычно берутся во внимание множество факторов: экологичность, натуральность, цена, качество, индивидуальные предпочтения и безопасность минеральной ваты или иного материала. Выбор – за Вами!

виды и характеристики, применение, цены

Минеральная вата более 140 лет используется в строительстве для теплоизоляции зданий. Это упругие маты и рулоны разной толщины, образованные хаотично переплетенными волокнами из расплавленных пород и минералов. Между ними образуется большое количество внутренних воздушных карманов, которые сохраняют тепло защищаемых конструкций.

Оглавление:

  1. Особенности минваты
  2. Разновидности утеплителей
  3. Область применения
  4. Популярные марки и цены

Свойства

Особенности материала обеспечивает ей уникальное сочетание качеств:

  • Морозостойкость и негорючесть (рабочий диапазон может достигать -200..+1000°С).
  • Упругие волокна хорошо поглощают звуковые колебания, проникающие через перекрытия и стены (до 50 дБ).
  • Каменная вата не боится ни химических реактивов, ни воды, но при высокой влажности она утрачивает свои теплоизоляционные свойства.

Также минеральная вата показывает отличную паропроницаемость от 0,3 до 0,55 мг/м·ч·Па, что позволяет ей лучше регулировать микроклимат в помещениях и при этом самостоятельно избавляться от скапливающейся между волокнами влаги, при условии, что для этого были оставлены проветриваемые зазоры размером 2-4 см.

Виды и характеристики

Минеральная вата часто классифицируется по форме выпуска, тесно связанной с плотностью плетения волокон. Утеплители можно купить в виде рулонов большого размера, рыхлых матов, жестких плит и специальных скорлуп для изоляции трубопроводов. Что же касается сырья для производства каменных нитей, то здесь принято различать три основных вида.

1. Базальтовая вата.

Производится из габбро-базальтового волокна, обладающего высокими показателями прочности и упругости. По качеству лучше нее материалов нет, выпускается плотностью от 30 до 180 кг/м3, что позволяет применять в самых разных конструкциях – вплоть до изоляции бетонной стяжки.

Базальтовая вата в зависимости от толщины волокон приобретает уникальные характеристики:

ПоказателиКаменнаяБТВ (тонкое волокно)БСТВ (сверхтонкое)
Размеры волокон, мкм:

-толщина

-длина

 

4 – 12

16

 

5 – 15

20 – 50

 

1 – 3

50 – 70

Огнестойкость минваты, °С+600+700+1000
Суточное водопоглощение, %0,0950,0350,02
Теплопроводность, Вт/м·К0,35 – 0,048
Звукопоглощение (коэффициент)0,75 – 0,950,8 – 0,950,95 – 0,99
Химическая стойкость к щелочам, % потери веса6,42,752,75

Срок службы утеплителя из базальта превышает 50 лет.

Сопротивление сжатию – еще один важный показатель для этого материала. Его учитывают при изоляции стен, наклонных и эксплуатируемых плоских крыш. Здесь прочность зависит от количества поперечных волокон – чем выше их число, тем большую нагрузку выдержит минеральная вата без уменьшения толщины и потери свойств. В среднем это около 15-20 кПа для легких утеплителей, 25-40 кПа у фасадных плит и от 45-50 кПа для жестких изделий под стяжку.

2. Стекловата.

Волокна для нее получают путем расплава стеклобоя, так что стоимость невелика. Нити здесь толще и длиннее базальтовых, и, судя по описаниям производителей, должны обладать большей упругостью. Однако эта разновидность минваты имеет одно неприятное свойство. Ломкие стеклянные нити дают огромное количество абразивной пыли, которая поднимается в воздух, попадает в легкие и оседает на коже.

Она столь же эффективна, как и базальтовая вата (0,038-0,046 Вт/м·К), однако прочие ее характеристики не впечатляют:

  • Огнестойкость – +450°С.
  • Сорбционное увлажнение – 1,7-2 %.
  • Коэффициент звукопоглощения – 0,8-0,92.
  • Химическая стойкость к воде и щелочам – 6-6,2 %.
  • Склонность к слеживанию и потере до 70 % эффективности, если сроки эксплуатации минваты превышают 10 лет.

В последнее время производители занялись улучшением свойств стекловаты, так что теперь на рынке появляются материалы с довольно высоким показателем упругости. Это позволяет теплоизоляции восстанавливать свои размеры после снятия нагрузки. Можно приобрести и нестандартные двухслойные плиты, имеющие жесткую поверхность из стекловойлока, паробарьер из фольги или ветрозащиту. Но какими бы идеальными ни были условия эксплуатации, толщина утеплителя даже самого высокого качества со временем уменьшается, и через 15 лет его все равно придется менять.

3. Шлаковая вата.

Продукт переработки металлургических отходов выпускается плотностью от 75 кг/м3. По показателю огнестойкости он серьезно проигрывает основным видам каменной ваты – всего +250..+300°С. Водопоглощение самое высокое – 1,9 % в сутки, да и проводимость не лучше (0,46-0,48 Вт/м·К). А по колкости и химической стойкости этот материал очень близок к стекловолокну.

На рынке шлаковая минвата оказалась в меньшинстве не из-за того, что имеет слабые технические характеристики. Сам утеплитель обладает так называемой остаточной кислотностью, которая при увлажнении вызывает коррозию соприкасающихся с ней металлических элементов.

Применение

Характеристики минеральной ваты определяют сферу ее использования как для внутренней, так и внешней теплоизоляции (при соблюдении требований к влагозащите). Рулоны и плиты поистине универсальны, так что их используют в частном и промышленном строительстве. Особенно ценится огнестойкость каменной ваты, благодаря которой ее применяют в самых «горячих точках», где другие материалы не выдержат воздействия высоких температур:

  • Стены и кровля бани или сауны.
  • Дымоходы.
  • Трубы отопления и ГВС.

Огнестойкость самой изоляции хоть и высока, при температуре свыше +250 °С бесполезна, если на слой утеплителя минеральной ваты оказывается механическое воздействие. В таких условиях происходит разрушение связующих полимеров, удерживающих волокна вместе. А без них каменные нити начинают смещаться, и плита просто осыпается со стены.

Неплохо справляется минеральная вата и с функциями звукопоглощения, а значит, ее можно применять для повышения комфортности жилья. Особенно хорошо себя показывает теплоизоляция из сверхтонких волокон БСТВ, а стеклянная и шлаковая, по отзывам, не дают нужного эффекта даже при толщине слоя на стенах и в перекрытиях 100-150 мм.

Краткий обзор производителей

  • Rockwool – эта марка выпускает лучшую базальтовую изоляцию, цена и качество которой идеально уравновешены. Характеристики утеплителя любой серии Роквул достаточно высоки, поскольку за основу взяты волокна с показателями огнестойкости +1000 °С.
  • Технониколь – ее ассортимент больше ориентирован на теплоизоляцию нагружаемых несущих конструкций и отличается высокой плотностью. Легкая минвата этой марке, по отзывам строителей, пока не удается – разваливается в руках, но ее стоимость за м2 заметно ниже, чем у Роквула.
  • Урса – одна из первых внедрила технологию изготовления минеральной ваты с безопасным акриловым связующим PureOne. Для нее используется штапельное волокно, лишенное основных недостатков стекловаты вроде плохой звукоизоляции или избыточного пылеобразования.
  • Knauf – выпускает силикатные и базальтовые утеплители, так что купить подходящий материал можно для любых видов работ. Особое внимание производитель уделяет уменьшению колкости стекловаты за счет упрочнения волокон, и основные технические характеристики от этого становятся только лучше.

Стоимость

ПроизводительСерия минватыОбъем упаковки, м3Цена руб/уп.
RockwoolСкандик0,29430
РокФасад0,12710
ТехноникольРоклайт0,43660
ТехноФас0,22950
KnaufКоттедж Плюс0,6740
Термо Плита-0370,91390
УрсаPureOne-34PN0,45880
Terra0,3420

характеристики и разновидности этого теплоизоляционного материала в структуре эффективного утепления дома

Попытки многих жителей домов повысить комфортность проживания в зимнее время мотивировали установку эффективных отопительных систем. Но стабильная температура в этих случаях граничит с повышенными затратами на оплату энергоносителей. А утепление потолка минватой и всего дома решает одновременно две проблемы – и поддержание стабильного температурного режима и минимизацию расходов на отопление. При этом еще и достигается неплохой показатель по звукоизоляции.

Технические характеристики минеральной ваты

Минвата известна тем, что имеет один из самых эффективных показателей теплопроводности. Если сравнивать его с аналогичными параметрами других утеплителей, то минвата находится в одном ряду по эффективности с пенопластом и значительно превосходит многие другие утеплители.

  • Коэффициент теплопроводности минеральной ваты для разных ее вариантов колеблется в пределах 0,036-0,042 ВТ/(м*К). На этот параметр влияет плотность утеплителя
  • Плотность минваты устанавливается производителем в зависимости от ее функционального назначения и формы выпуска. Стандартные показатели – 100,150,200 кг/м3. Чем выше плотность, тем эффективнее способность материала удерживать тепло
  • Еще одной важной характеристикой минеральной ваты есть ее способность противостоять влиянию биологических форм. Обладая конвекцией в достаточном объеме, минвата не является оптимальным местом для развития грибковых форм и плесени
  • Свойство минеральной ваты относительно гигроскопичности тоже играет роль в ее функциональности. Влага не накапливается на ее волокнах и свободно проникает сквозь них. Это обстоятельство дает основания не опасаться насчет смещения точки росы в толщу утепляемой поверхности. Кроме того, относительная гигроскопичность позволяет использовать материал для устройства вентилируемых фасадов

Важно! Хотя волокна минваты и не впитывают влагу в себя, они способны сохранять ее в структуре материала между волокон. Поэтому рекомендуется использовать этот материал только при утеплении наружной части строения или внутри конструкции стен.

  • Важным положительным свойством минеральной ваты есть ее устойчивость к высоким температурам. Возгорание материала практически исключено, так как фенолформальдегидные смолы, включаемые в ее состав, не имеют склонности к горению. Даже при риске возникновения пожара, волокна минваты не загораются, а лишь слегка плавятся, выдерживая при этом температуру до 800 градусов
  • Относительно теплоемкости и способности сохранять тепло свидетельствует тот факт, что минвата без последствий выдерживает понижение температуры до – 160 градусов.

Однако при утеплении минватой любых конструкционных поверхностей здания надо иметь в виду, что минвата со временем подвергается деформации, образуя при этом мостики холода. Однако подобные проявления можно ожидать по истечении 8-10 лет эксплуатации.

Еще одним недостатком минеральной ваты есть то, что ее волокна доступны для грызунов. И хотя они не интересуются материалом в качестве еды, но могут устраивать в толще утеплителя свои гнездовья.

Минеральную вату используют для утепления не только частных домов, но и квартир, а также отдельных её частей. Если вы живете на первом этаже и знаете, как правильно утеплить балкон, то можно утеплить его снаружи минватой.

Для внутренних стен балкона чаще используют пенопласт. Читайте о том, что лучше (пенопласт или минвата) здесь. В статье приведено подробное сравнение этих двух материалов.

Какие виды минеральной ваты выпускаются сегодня

Производство этого утеплителя основано на использовании минеральных компонентов, имеющих идентичные свойства. Структура каждого типа минеральной ваты представляет собой хаотичное переплетение волокон, что способствует прочности сцепления и изоляционным свойствам.

Наиболее распространенными видами минваты сегодня есть:

  • Каменная вата
  • Стекловата
  • Шлаковата

Несмотря на общие параметры, эти категории минваты имеют некоторые особенности.

Стекловата

Эта категория минеральной ваты производится путем плавления нескольких компонентов:

  • Песка
  • Известняка
  • Доломита
  • Буры
  • Соды

В результате достигается материала с коэффициентом теплопроводности 0,038-0,040 Вт/м*К. При этом полученная длина волокон достигает 0,5 см, а их толщина – 12 микрон.

Стекловата – один из первых материалов этой категории. Она обладает всеми присущими достоинствами, но имеет один существенный недостаток.

Стекловата в структуре волокон содержит мельчайшие частицы стекла, которым очень часто ранятся рабочие в процессе утепления, поэтому главное требование при работе с минватой – соблюдение мер предосторожности.

В остальном этот материал пригоден для утепления полов, стен, кровельных конструкций.

Шлаковата

Характеристики этого типа минеральной ваты несколько скромнее. Причиной тому – ее действующие компоненты. Шлаковату изготавливают из отходов доменного производства. Отработанные шлаки проходят те же стадии обработки, что и в процессе производства стекловаты. При этом образуются волокна длиной до 15-16 мм и диаметром от 5 до 8 микрон.

  • Компоненты шлаковаты содержат повышенную остаточную кислотность, способную вступать в реакцию с металлическими компонентами и вызывать возникновение коррозии
  • Теплопроводность шлаковаты несколько выше и составляет 0,048-7-0,052 Вт/(м*К). Менее привлекательны и параметры огнеупорности – шлаковата способна выдерживать температуру до 400 градусов, после начинает деформироваться

Каменная вата

В последние годы этот материал стал наиболее популярен среди аналогов. Каменная вата производится из горных пород базальта. Характеристики базальтового утеплителя, а точнее показатель теплопроводности у него самый эффективный – от 0,032 до 0,038 Вт/(м*К).

Обладает каменная вата и достаточной плотностью, что увеличивает период ее эксплуатации до десяти лет. Она менее подвержена деформации и не представляет опасности в экологическом отношении. Устойчивость к температуре также высокая – выдерживает до 900 градусов.

Советы по выбору минваты

Выбирая минвату для утепления, нужно принимать во внимание условия ее эксплуатации и место размещения. Утеплитель в форме матов прослужит дольше и обеспечит больший уровень теплоемкости.

Обращать внимание надо и на плотность и толщину минеральной ваты. Цена минваты часто обоснована ее технологическими характеристиками, но это не решающий признак в выборе материала.

При покупке надо больше уделять внимания показателям теплопроводности и пароизоляции.

И тогда можно будет уверенно находится многие годы в комфортной обстановке со стабильной температурой при любых морозах за окнами.

Видео о характеристиках минеральной ваты

Характеристики каменной ваты Роквул. Преимущества каменной ваты.

Как делают стекловату. Показан процесс изготовления стекловолоконной теплоизоляции на производстве.

Что такое изоляция из минеральной ваты? Из чего он сделан и как работает

Существует множество вариантов изоляции, и один из них, с которым вы столкнулись, — это изоляция из минеральной ваты.

Все эти варианты могут усложнить покупку утеплителя для дома, но мы готовы помочь.

RetroFoam of Michigan специализируется на пенопластовой изоляции, но мы сталкиваемся со всеми видами изоляции в домах, в которых работаем. При этом мы здесь, чтобы помочь вам, предоставляя всю информацию, необходимую для принятия обоснованного решения.

Я разобью его для вас и точно расскажу, что такое изоляция из минеральной ваты, из чего сделана изоляция из минеральной ваты, плюсы и минусы материала и как работает изоляция из минеральной ваты.

Что такое изоляция из минеральной ваты?

Утеплитель из минеральной ваты — уникальный универсальный продукт.

Это неметаллический неорганический материал, обладающий термическими, огнестойкими и акустическими свойствами. По данным Ассоциации производителей изоляционных материалов из минеральной ваты, изоляционный материал из минеральной ваты может быть разной плотности, что дает ему различные преимущества.

Минеральная вата может быть сыпучим зернистым материалом, используемым в качестве вдувной изоляции, устанавливаемой в открытых полостях. Также имеется изоляция из минеральной ваты для стен, чердаков, полов и потолков.

Из чего сделана изоляция из минеральной ваты и как она работает?

Теперь вы понимаете, что такое изоляция из минеральной ваты, теперь вы, вероятно, задаетесь вопросом, из чего состоит изоляция из минеральной ваты и как она работает.

Минеральная вата — это волокнистый утеплитель, похожий на стекловолокно, но изготовленный из натуральных материалов, а не из стекла.Существует два вида минеральной ваты, используемой для утепления дома: минеральная вата, которая производится из волокон каменной ваты, и шлаковая вата, которая представляет собой волокна, полученные из отходов железной руды.

Изоляция из шлака и каменной минеральной ваты работает как теплоизоляция, так и звукоизоляция.

Минеральная вата может помочь замедлить потерю тепла в доме за счет конвекции, а также теплопроводности. Поскольку это пористый материал, он также может снизить уровень шума в доме, позволяя воздуху проникать в ткань.

Согласно MIMA, колебания молекул воздуха, которые образуют звуковые волны, перемещаются в минеральную вату, где трение между частицами воздуха и узкими дыхательными путями вызывает рассеивание звука в виде тепла.

Плюсы и минусы утеплителя из минеральной ваты

Каждый изоляционный материал, доступный домовладельцам, имеет свои уникальные плюсы и минусы.

Давайте кратко рассмотрим, что может предложить изоляция из минеральной ваты и чего можно избежать.

Плюсы изоляции из минеральной ваты

  • Минеральная вата не удерживает влагу и сохраняет свои изоляционные свойства при намокании.
  • Одним из преимуществ изоляции из минеральной ваты является то, что она помогает блокировать передачу звука, делая дом более тихим.
  • Минеральная вата не служит катализатором пожара, и некоторые материалы не горят, пока температура не достигнет около 1800 градусов.
  • Изоляция из минеральной ваты очень универсальна и бывает разных форм.

Минусы изоляции из минеральной ваты

  • Как и стекловолокно, при работе с изоляцией из минеральной ваты необходимо носить защитное снаряжение, так как крошечные кусочки могут попасть в кожу.
  • Эти маленькие полоски также можно вдохнуть, вызывая болезнь.
  • Как и большинство традиционных утеплителей, минеральная вата по-прежнему пропускает воздух через материал.
  • Минеральная вата дороже стекловолокна.

Как установить изоляцию из минеральной ваты

Утеплитель из минеральной ваты можно производить на чердаке, в открытых полостях стен и перекрытиях перекрытий.

Самая распространенная форма теплоизоляции из минеральной ваты в домах — ватные или рулонные.Процесс установки для обоих одинаковый.

Рулон или войлок следует поместить в полость, убедившись, что он имеет правильный размер, чтобы не было воздушных зазоров и материал не склеивался на месте. Минеральную вату можно разрезать, чтобы убедиться, что она правильно подходит к полости.

Следует иметь в виду несколько вещей: если минеральная вата добавляется к существующим стенам с удаленным гипсокартоном, вам нужно будет обрезать минеральную вату, чтобы она соответствовала электрическим коробкам и розеткам. Когда дело доходит до тепловых каналов на полу, вам нужно закрыть эти каналы, чтобы поддерживать температуру воздуха.

Монтаж может быть выполнен как самостоятельный проект или подрядчиком, который предлагает материал в качестве опции.

Выбор утеплителя из минеральной ваты для дома

Утеплитель из минеральной ваты — еще один вариант для домовладельцев, которые хотят сделать свое жилище более комфортным.

При использовании этого материала следует помнить, что, хотя он может замедлять поступление воздуха в дом, он не останавливает его полностью. Несмотря на то, что он имеет некоторые большие преимущества, такие как шумоподавление и пожаробезопасность, если вы имеете дело с высокими ежемесячными счетами за электроэнергию, это может быть не то решение, которое вы ищете.

В нашем учебном центре полно информации о пенопласте, но у нас также есть много других ресурсов по другим материалам. Вы, конечно, можете прочитать о пене, но также о целлюлозе, стекловолокне, пробке и пенопласте.

Удачи и приятного чтения!

Статьи по теме

Как предотвратить потерю кондуктивного тепла в вашем доме, как в термосе

Звукоизоляция и звукоизоляция комнаты: в чем разница?

Что следует учитывать при строительстве энергоэффективного дома

II.Технические характеристики минеральной ваты

9. Какими качествами обладает минеральная вата?
10. Имеются ли положительные качества минеральной ваты и для покрытий, изготовленных из нее?
11. Насколько устойчивы к старению изоляционные материалы из минеральной ваты?
12. Может ли изоляция минеральной ватой снизить риск возгорания?
13. Минеральная вата может снизить риск возгорания. Относится ли это также к облицовочным плитам из минеральной ваты?
14.Могут ли эти облицовочные плиты из минеральной ваты выполнять дополнительные функции помимо дизайнерского замысла?
15. Обеспечивает ли минеральная вата также защиту от жары летом?
16. Может ли минеральная вата плесневеть?
17. Можно ли обрабатывать минеральную вату мастерами-любителями?
18. Выделяет ли минеральная вата волокнистую пыль после установки?
19. Можно ли трогать минеральную вату голыми руками?
20. Обеспечивают ли изделия из минеральной ваты такое же качество и безопасность, как и другие утеплители?
21.Насколько высок уровень безопасности продукции со знаком качества RAL?

9. Какими качествами обладает минеральная вата?

Минеральная вата обеспечивает оптимальную защиту от тепла, звука и огня от подвала до крыши. Минеральная вата проста в обращении и обрабатывается без проблем. Кроме того, минеральная вата — это продукт, полученный из натурального сырья, не подверженный старению в течение десятилетий и, следовательно, особенно экономичный.

10. Имеются ли положительные качества минеральной ваты и для изготовленных из нее накладок?

Да, в полном объеме.Обработка твердых плит приводит к получению конечных продуктов, которые сохраняют все типичные качества минеральной ваты.

11. Насколько устойчивы к старению изоляционные материалы из минеральной ваты?

Минеральная вата чрезвычайно устойчива к старению, поэтому изоляционный эффект в конструкции остается неизменным в течение многих десятилетий.

12. Может ли изоляция минеральной ватой снизить риск возгорания?

Да, потому что минеральная вата является негорючим изоляционным материалом и вносит важный вклад в превентивную защиту конструкции от огня.Не образуются токсичные дымовые газы.

13. Минеральная вата может снизить риск возгорания. Относится ли это также к облицовочным плитам из минеральной ваты?

Да, это одно из важнейших его качеств. В зависимости от исполнения он отвечает строительным требованиям: негорючесть или трудновоспламеняемость. На рынке представлены плиты с задержкой возгорания до 2 часов, что соответствует классу огнестойкости F 120.

14. Могут ли эти облицовочные плиты из минеральной ваты выполнять дополнительные функции помимо дизайнерского замысла?

Да, плиты из минеральной ваты предлагаются производителями в самых разных исполнениях, например.грамм. с дополнительными функциями, такими как противопожарная защита, звукоизоляция, акустика, охлаждение или вентиляция.

15. Предлагает ли минеральная вата защиту от жары летом?

Да, хорошая изоляция в сочетании с теплоаккумулирующей массой внутри обеспечивает очень хорошую летнюю тепловую защиту.

16. Может ли минеральная вата плесневеть?

Нет, минеральная вата не впитывает влагу и не является средством для ухода за телом. Рост плесени на стенах и покрытиях часто появляется из-за повреждений конструкции, и это должно быть проверено специалистом.

17. Можно ли обрабатывать минеральную вату мастерами-любителями?

Да, строители-любители без проблем перерабатывают минеральную вату от подвала до крыши в собственном доме. Простота обращения с минеральной ватой по-прежнему поддерживается широким выбором системных продуктов для решения различных проблем. Обработка минеральной ваты, e. грамм. на фасадах или на коммерческих поверхностях инженерные работы должны выполняться профессиональными мастерами.

18. Выделяет ли минеральная вата волокнистую пыль после установки?

Нет, исследования, проведенные Департаментом окружающей среды, доказывают, что в жилые помещения и коммунальные предприятия, изолированные минеральной ватой, не выделяется значительного количества волоконной пыли.

19. Можно ли трогать минеральную вату голыми руками?

Да, утеплители из минеральной ваты со знаком качества RAL можно трогать голыми руками. В профилактических целях следует надевать рабочие перчатки, а также мыть руки после работы с минеральной ватой.Если чувствительная кожа реагирует зудом, это временный симптом, который проходит сам по себе.

20. Обеспечивают ли изделия из минеральной ваты такое же качество и безопасность, как и другие утеплители?

Да, они предлагают как минимум такое же качество и безопасность. У них разумное соотношение цены и качества, и они служат десятилетиями. Знак качества RAL гарантирует проверенное качество и безопасность минераловатных утеплителей в том числе с точки зрения противопожарной защиты.

21. Насколько высок уровень безопасности продукции со знаком качества RAL?

Продукция из минеральной ваты со знаком качества RAL соответствует очень высоким стандартам безопасности.Прежде чем продукция производителя будет отмечена знаком качества RAL, производитель минеральной ваты должен пройти строгие проверки качества Gütegemeinschaft Mineralwolle e.V .. Эти доказательства предоставляются независимыми экспертными институтами. Даже после присвоения знака качества RAL продукция производителей находится под регулярным независимым контролем.

Характеристики минеральной ваты — PDFCOFFEE.COM

Index О нас Наше видение Наша миссия Наши ценности История минеральной ваты Характеристики минеральной ваты Свойства минеральной ваты

Просмотры 47 Загрузки 0 Размер файла 1 МБ

Отчет DMCA / Авторское право

СКАЧАТЬ ФАЙЛ

Рекомендовать истории
Предварительный просмотр цитирования

Index О нас Наше видение Наша миссия Наши ценности История минеральной ваты Характеристики минеральной ваты Свойства нашего устойчивого развития

О нас

Insulation Company является членом

CITADEL CAPITAL, открытой в Египте с 2008 года и расположенной в Садат Фри Zone Area, на равном удалении от Каира и Александрии.

Компания специализируется на производстве как стекловаты, так и минеральной ваты, которые широко используются в различных изоляционных материалах, и с большим упором на технологию STM, применяемую в различных производствах. Общая годовая производственная мощность компании составляет 30 000 тонн минеральной ваты и 20 000 тонн стекловаты.

Изделия из стекловаты и минеральной ваты, изготовленные из высококачественных материалов, используются в различных отраслях промышленности, в том числе в строительстве, судостроении и автомобилестроении, а также в сельскохозяйственном секторе, где они используются в качестве удобрений и вредителей / насекомых. убийцы.

В целом изделия из минеральной ваты, такие как стекловата и минеральная вата, играют важную роль в сохранении и рациональном использовании энергии, что значительно снижает токсичные выбросы, влияющие на температуру всей планеты.

Наше видение Мы стремимся быть признанными первоклассным поставщиком изоляционных решений в мире. Добавляя ценность нашим региональным, а также международным клиентам и акционерам и при постоянной поддержке нашей преданной и инновационной рабочей команды, мы стремимся стать компанией, с которой клиенты хотят работать, сотрудники гордятся тем, что работают, акционеры удовлетворены инвестициями, и, прежде всего, заинтересованные стороны ценят его социальную роль.

Наша миссия Наша миссия — разрабатывать и продавать решения по тепло- и звукоизоляции. Удовлетворяя качество наших клиентов, мы не только защищаем окружающую среду, но и экономим энергию. При этом мы предлагаем нашим сотрудникам платформу, на которой они могут учиться, вводить новшества и добиваться устойчивого прибыльного роста. Мы всегда будем обеспечивать соблюдение самых высоких, самых этических, экологических и безопасных стандартов.

Наши ценности Лидерство интегрировано со стратегией компании, включая как операционные, так и организационные аспекты для точного удовлетворения потребностей любого конкретного рынка.

Люди основная ценность Люди — это наш главный актив. Соответственно, осознавая важность людей для успеха нашего бизнеса, мы стремимся быть предпочтительной компанией для сотрудничества. В свою очередь, мы будем развивать в людях стремление к совершенству.

Этика, поддерживающая профессиональное и этическое поведение не только в нашей команде, но также в нашем обществе и заинтересованных сторонах.

Constructive Partnership считает, что для наших клиентов мы партнеры, а не продавцы; и мы считаем, что являемся активным членом общества.

Совершенство не только в продуктах, но и в предоставляемых услугах, в исследованиях и разработках.

Забота об окружающей среде, будучи участником энергетического процесса, направленного на то, чтобы люди и организации полностью и добровольно разделяли идею изоляции, защиты окружающей среды и экономии энергии, в то же время придерживаясь общечеловеческих ценностей ».

«считаем, что для наших клиентов мы партнеры, а не продавцы; и мы считаем, что являемся активным членом общества.”

Минеральная вата История История стекловаты В ранней истории первые тонкоплетенные стекловолокна, называемые минеральной ватой, были произведены в 1870 году Джоном Плейером. На Всемирной выставке 1893 года зрители могли увидеть изысканное платье из стекловолокна. Однако только в 1938 году была произведена первая изоляция из стекловолокна. Он был изобретен компанией Owens Corning, которая на сегодняшний день является крупнейшим в мире производителем стекловолокна.

История каменной ваты Изоляция Странный, похожий на шерсть материал — вулканический принцип.Около 1900 года ученые на гавайском вулкане Килауэа обнаружили странный материал, напоминающий шерсть, висящий на деревьях. Анализ показал, что это каменное волокно и обладает исключительными качествами — отличными противопожарными качествами, превосходными изоляционными свойствами и полностью натуральным. В 1937 году Густав Калер привез в Данию принцип вулканизма и основал первую фабрику Rockwool недалеко от Копенгагена. Условия ниже нуля создали огромный спрос на строительные изоляционные материалы, и началась работа по совершенствованию процесса, который имитировал бы природу при создании каменных волокон.

Характеристики минеральной ваты. Для изоляции используются два основных типа минеральной ваты; и у каждого типа есть свои особенности.Пользователь / аппликатор должен быть в состоянии определить правильный тип для применения.

Изоляция из стекловаты Стекловата изготавливается из песка, переработанного стекла, известняка и кальцинированной соды. Это те же ингредиенты, которые используются для изготовления знакомых стеклянных предметов, таких как оконные стекла или стеклянные бутылки. Из стекла образуются миллионы тонких волокон. Смола используется для связывания волокон вместе с образованием мата из материала. Плотность продукта определяет, является ли утеплитель легким стеганым одеялом, поставляемым в рулонах, гибкой плитой или жесткой плитой, и, таким образом, определяет ее теплоизоляционные свойства.

Характеристики • Длинное волокно, обеспечивающее хорошую прочность на разрыв • Подходит для температур до 400 ° C • Негорючие • Легкие • Доступны в рулонах и плитах

Основное применение • Изоляция чердака • Изоляция стен полостей • Звукоизоляция (поглощение) внутри перегородки и полы

Изоляция из каменной ваты Минеральная вата в основном состоит из вулканических пород, как правило, из базальта и / или доломита. Все большую долю составляют переработанные материалы из шлака и отходы доменных печей.Материалы плавятся, а затем превращаются в тонкие волокна. Затем используется смола, чтобы связать волокна вместе с образованием изоляционного мата.

Характеристики

Основное применение

• Короткое волокно — прочность на сжатие • Подходит для температур до 850 ° C • Негорючий • Более плотный, чем стекловата • Доступен в форме плит, рулонов и матрасов • Высокая прочность на сжатие

• Теплоизоляция плоских крыш, фасадов с защитой от дождя и внешней изоляции стен • Противопожарная защита, включая дымовые и противопожарные барьеры • Применение при высоких температурах • Звукоизоляция полов и стен

Свойства минеральной ваты Поглощение звука и вибраций Энергия звуковых волн, поглощаемая минеральная вата и волокна стекловаты из-за перекрещенных волокон и воздушных карманов.Такая структура делает минеральную вату и стекловату одними из лучших звукопоглощающих изоляционных материалов для строительства и промышленного применения. Помимо преимущества легкого веса, минеральная вата также может использоваться для контроля вибраций, вызываемых такими источниками, как движение транспорта, вентиляционные системы, тяжелые машины и т. Д.

Огнестойкость Минеральная вата и волокна стекловаты могут выдерживать температуры более 750 ° C для минеральной ваты и 400 ° C для стекловаты. минеральная вата сохраняет свою теплопроводность и способность к противопожарной защите даже при температурах, например, в случае пожара, превышающих 900 ° C.Поэтому при противопожарной защите его следует закрепить таким образом, чтобы гарантировать, что они сохранят свое положение и форму даже после того, как связующее испарится из-за пожара.

Стабильность Ориентация волокон минеральной ваты придает ему очень хорошие механические свойства, а также отличную стабильность, отсутствие теплового расширения или сжатия благодаря структуре с открытыми порами. Воздушные карманы позволяют пару легко проходить через них, а также обладают отличной теплопроводностью. Более короткая длина волокна минеральной ваты также дает возможность изготавливать изделия с более высокой плотностью и гораздо большей нагрузочной способностью, чем другие материалы.

Водоотталкивающие свойства Влага внутри изоляции снижает теплопроводность. Под воздействием воды или дождя минеральная вата иногда может выглядеть так, как будто она полностью мокрая. Фактически вода не проникает в продукт. Даже если вода попадает в сердцевину минеральной ваты или стекловаты, через определенное время вода испаряется, а волокна высыхают, так как сам материал диффундирует. После высыхания продукт полностью восстанавливает свои свойства.

Теплопроводность Теплопроводность λ изменяется в зависимости от температуры изолируемого элемента.При нормальных температурах минеральная вата имеет теплопроводность от 0,035 до 0,040 Вт / мК. Преимущество минеральной ваты перед другими изоляционными материалами заключается в том, что она сохраняет свои свойства в течение длительного времени даже при сильном пожаре. Эта способность предотвращает перегрев или даже самовоспламенение других материалов за минеральной ватой.

Нейтральность Волокна минеральной ваты — это неорганические биологически инертные материалы, состоящие из природных вулканических горных пород и песка, кремнезема в случае стекловаты, который образует неблагоприятную среду для роста грибов, бактерий, паразитов и вредителей.Эти волокна также не содержат асбеста.

Долговечность Волокна минеральной ваты состоят из натуральных, химически инертных волокон, образующих структуру с открытыми порами, которая со временем сохраняет свои характеристики, что подразумевает простоту обращения и беспроблемное хранение.

Our Sustainability Choice — это преданная делу компания, производящая экологически чистые продукты.

Глобальные проблемы в области энергетики и климата Наши продукты не наносят вреда окружающей среде от природы до природы. В наших производственных процессах мы стараемся применять наиболее эффективные методы и интегрировать природные ресурсы, чтобы сократить выбросы CO2 и сохранить энергию.

Доступная изоляция Даже в процессе производства мы заботимся о сокращении выбросов углерода. 70–80% остатков минеральной ваты перерабатываются, что позволяет значительно сократить количество отходов.

Энергоэффективность в строительстве Жилые дома являются основными потребителями энергии; на здания приходится не менее 40% энергопотребления в большинстве стран. Большая часть этих потерь энергии происходит из-за недостаточной изоляции. Утепляя здания, вы экономите энергию. Можно уменьшить 80% энергии здания, необходимой для отопления или охлаждения, что продлит срок службы актива.

Тепловой и акустический комфорт Более того, поскольку люди проводят большую часть своего времени в зданиях, будь то офисы, торговые центры или даже дома, неизбежно обеспечить комфорт в помещении.

www.glassrock.com.eg

Sensors and Materials

Special Issue on Advanced Materials and Sensing Technologies on IoT Applications: Part 2-2
Приглашенный редактор, Teen-Hang Meen (Национальный университет Формозы), Wenbing Zhao (Университет Кливленда) и Cheng-Fu Yang (Национальный университет Гаосюн)
Запрос на публикацию статьи
  • Принятые статьи (щелкните здесь)
    • Реализация инициативного ремонта сети распределения электроэнергии на основе оптимизации нейронной сети обратного распространения
      Чжихуа Го, Дунпин Цяо, Ху Цяо и На Ли
    • Распознавание номерного знака транспортного средства на основе искусственной нейронной сети Хопфилда
      Тянь-Сюн Лан, Цзявэй Ли, Сюань-Цзюнь Дай, Хо-Шенг Чен и Жуйминь Лю
    • EfficientNet: платформа датчиков изображений IoT с низкой пропускной способностью для классификации болезней листьев маниоки
      Чи-Ченг Чен, Джу Ян Ба, Ти Цзюнь Ли, Кристофер Чун Ки Чан, Кун Чинг Ван и Чжэнь Лю
    • Моделирование и анализ отслеживания точек питания с помощью фотографий датчики напряжения
      Fujian Zhang, Weidong Ye, Guoping Lei, Yingying Liu, Xian Wang и Chih-Cheng Chen
    • Портативный измеритель импульсов
    • с простой конструкцией
      Tian-Syung Lan, Yan Jiao, Xuan-Jun Dai, Ho-Sheng Chen, и Чжинцин Ян
  • Специальный выпуск по передовым методам и устройствам для дистанционного зондирования
    Приглашенный редактор, Лэй Дэн и Фучжоу Дуань (Столичный педагогический университет, Пекин)
    Звоните, чтобы получить доклад

  • Принятые документы (щелкните здесь)
    • Структура визуализации городских наводнений на основе пространственной сетки
      Чуюань Вэй, Чанфенг Цзин, Шоуцин Ван и Делонг Ли
    • Проектирование и реализация мобильной и подъемной платформы для панорамного наблюдения
      Ян Лю, Си-Ян Гао, Мин-И Ду, Го- Инь Цай, Чжао-Инь Ян, Сяо-Ю Лю, Хэн Ян и Цзин-Цзюэ Цзя
    • Долгосрочное обнаружение изменений земного покрова с использованием мультисенсорных и мультиразрешающих изображений дистанционного зондирования: пример Чанъаньского университета, Китай
      X ianglei Liu, Nilufar Adil и Xiaolong Ma
    • Сочетание 137Cs с моделью GeoWEPP для изучения краткосрочной эрозии почвы на склонах в карстовых областях в Юго-Западном Китае
      Chuan Yin, Kai Xiong, Hongbing Ji и Mingyi Du
    • 3D Обнаружение изменений Накопление отходов городского строительства с использованием фотограмметрии беспилотных летательных аппаратов
      Цян Чен, Юань-Юань Ли, Цзи-И Цзя и Цянь-Хао Ченг
    • Мониторинг наклона башни на основе видео-фотограмметрии
      Чжунхуа Хун, Фань Ян, Хайян Пан, Руян Чжоу, Юнь Чжан, Яньлин Хань, Цзин Ван, Шуху Ян, Лицзюнь Сюй и Куйфэн Луань
    • Метод регистрации светового поля на основе глубинной выборки
      Фучжоу Дуань, Инь Цзо, Хунлян Гуань и Тянь Гуо
    • Динамический мониторинг пространственного Временные изменения качества экологической среды в Пекине на основе экологического индекса дистанционного зондирования с помощью Google Earth Engine
      Цзяци Лу, Хунлян Гуань, Чжицян Ян и Лэй Дэн
  • Спец. подать в суд на «Интеллектуальное производство и прикладные технологии», часть 2
    Приглашенный редактор, Ченг-Чи Ван (Национальный технологический университет Чинь-И)
    Запрос на публикацию статьи

  • Принятые статьи (щелкните здесь)
  • Специальный выпуск по усовершенствованным микро- и наноматериалам для различных приложений датчиков (избранные статьи из ICASI 2020)
    Приглашенный редактор, Шэн-Джуэ Янг (Национальный университет Формозы), Шоу-Джинн Чанг (Национальный университет Ченг Кунг), Лян-Вэнь Цзи (Национальный университет Формозы) и Ю- Джен Сяо (Южно-Тайваньский университет науки и технологий)
    Веб-сайт конференции
    Запрос статьи

    Специальный выпуск о сенсорных технологиях и их применении (II)
    Приглашенный редактор, Рей-Чуэ Хван (Университет И-Шоу)
    Позвоните paper

  • Принятые статьи (щелкните здесь)
  • Специальный выпуск по наукам о пленках и мембранах
    Приглашенный редактор, Атсуши Сёдзи (Токийский фармацевтический университет и науки о жизни)
    Запрос статьи

  • Принятые статьи (щелкните здесь)
  • Специальный выпуск о беспроводных сетевых датчиках Интернета вещей для жизни и безопасности
    Приглашенный редактор, проф.Тошихиро Ито (Токийский университет) и д-р Цзянь Лу (Национальный институт передовых промышленных наук и технологий)
    Запрос статьи

    Специальный выпуск о последних достижениях в области мягких вычислений и датчиков для промышленных приложений
    Приглашенный редактор, Чи Сянь Ся (Национальный университет Илан)
    Запрос на публикацию статьи

  • Принятые статьи (нажмите здесь)
    • Всенаправленная ультразвуковая локализация для мобильных роботов
      Чен-Цзянь Сю, Синь-Чуан Чен, Чинг-Чанг Вонг и Цзян-Ю Лай
    • Экспертная интеллектуальная система осмотра кожи головы с использованием глубокого обучения
      Sin-Ye Jhong, Po-Yen Yang и Chih-Hsien Hsia
    • Преобразование изображения в изображение через сети согласованности контуров
      Hsiang-Ying Wang, Hsin-Chun Lin, Chih -Сянь Ся, Натнуннита Сирифокпиром, Сянь-И Линь и Юнг-Яо Чен
    • Измерение фракции выброса и оценка аномалии движения региональной стенки с использованием нейронных сетей с глубоким обучением в левом желудочке
      Шань-Бинь Чан, Юань-Чун Лай, Вэй-Тинг Чанг, Го-Тинг Тан, Мин-Ши Хуанг, Чжих-Ченг Чен и Юнг-Яо Чен
  • Специальный выпуск о материалах, устройствах, схемах , и Системы биомедицинского зондирования и взаимодействия
    Приглашенный редактор, Такаши Токуда (Токийский технологический институт)
    Запрос статьи

    Специальный выпуск по передовым методам и устройствам для дистанционного зондирования
    Приглашенный редактор, Лэй Дэн и Фучжоу Дуань (столица Педагогический университет, Пекин)
    Запрос статьи

    Специальный выпуск по интеллектуальной мехатронике для сбора энергии
    Приглашенный редактор, Дайсуке Ямане (Университет Рицумейкан)
    Запрос статьи

    Специальный выпуск 2021 года Международная виртуальная конференция зеленых материалов, применяемых в Фотоэлектрические датчики (2021 ICGMAPS)
    Приглашенный редактор, Йен-Хсун Су (Национальный университет Ченг Кунг), Вэй-Шэн Чен (Национальный университет Ченг Кунг) и Чун-Чи Хуанг (Cheng Shiu University)
    Веб-сайт конференции
    Запрос статьи

    Специальный выпуск по сбору, обработке и применению измеренных сигналов датчиков
    Приглашенный редактор, Hsiung-Cheng Lin (Национальный технологический университет Chin-Yi)
    Запрос статьи

    Специальный выпуск о биосенсорах и биотопливных элементах для умного сообщества и умной жизни
    Приглашенный редактор, Сейя Цуджимура (Университет Цукуба), Исао Шитанда (Токийский университет науки) и Хироаки Сакамото (Университет Фукуи)
    Запрос на публикацию статьи

    Специальный выпуск об оптических, механических и электрохимических биосенсорах и их применении
    Приглашенный редактор, Шигэясу Уно (Университет Рицумейкан)
    Запрос статьи

    Специальный выпуск Международной мультиконференции по инженерным и технологическим инновациям 2021 (IMETI2021) )
    Приглашенный редактор, Вэнь-Сян Се (Национальный университет Формозы)
    Веб-сайт конференции

    900 02 Специальный выпуск по материалам, устройствам, схемам и аналитическим методам для различных датчиков (избранные статьи из ICSEVEN 2021)
    Приглашенный редактор, Чиен-Юнг Хуанг (Национальный университет Гаосюн), Чэн-Син Сюй (Национальный объединенный университет), Джа-Хао Чен (Университет Фэн Цзя) и Вэй-Лин Сю (Педагогический университет Хуайинь)
    Запросить бумагу

  • Принятые документы (нажмите здесь)
    • Система парковки, управляемая Bluetooth, на основе технологии позиционирования WiFi
      Синь-Чуан Чен , Rong-San Lin, Chiou-Jye Huang, Lidan Tian, ​​Xining Su и Haikun Yu
    • Адаптивная оценка скорости с помощью генетического алгоритма для векторного синхронного привода с постоянным магнитом
      Yung-Chang Luo, Song-Yi Xie, Chia- Хун Линь и Ин-Пиао Куо
    • Металлографический анализ сфероидизации с использованием нейронной сети глубокого обучения
      Рей-Чуэ Хван, И-Чун Чен и Хуан-Чу Хуанг
  • Специальный выпуск по зондированию и данным A nalysis Technologies for Living Environment, Health Care, Production Management, Engineering / Science Education Applications
    Приглашенный редактор, Чиен-Юнг Хуанг (Национальный университет Гаосюн), Рей-Чуэ Хван (Университет И-Шоу), Джа-Хао Чен ( Университет Фэн Чиа) и Ба-Сон Нгуен (Университет Лак Хонг).
    Заявка на участие.

  • Принятые статьи (щелкните здесь)
    • Обнаружение контура микросхемы на основе считывания и распознавания изображения в реальном времени
      Бао-Ронг Чанг, Сю- Фен Цай, Чиа-Вей Се и Мо-Лан Чен
    • Оптимизация и планирование пути для одновременной локализации и построения карт на основе бинокулярного стереозрения
      Нэн-Шэн Пай, Вэй-Чжэ Хуанг, Пи-Юнь Чен и Ши-Ан Chen
    • Система штамповки с автоматической подачей на основе программируемого логического контроллера Функция электронного кулачка
      Chien-Yu Lu, Wen-Yi Houng, Chun-Wan Chang, Sen-Hu Yen, Chia-Liang Tseng и Te-Jen Su
    • Electronic Анализ надежности под Радиационная среда
      Шер Мин Тан, Вимал Кант Пандей, Юэ Чанг и Цунг Пинг Ли
    • Разработка системы управления запасами на основе технологии RFID
      Мин-Чжи Чен, Инь-Тин Ченг и Чунг-Ю Сян
  • Специальный выпуск о датчиках изображения CMOS
    Приглашенный редактор, Хироши Отаке (nanolux co., ltd.)
    Запрос статьи

    Специальный выпуск по передовым технологиям дистанционного зондирования и геопространственного анализа
    Приглашенный редактор, Донг Ха Ли (Национальный университет Кангвона) и Мён Хун Чжон (Университет Чосун)
    Запрос статьи

  • Принятые документы (щелкните здесь)
  • Специальный выпуск о передовых технологиях изготовления и применении гибких и деформируемых устройств
    Приглашенный редактор, Ван Дау и Хоанг-Фыонг Фан (Университет Гриффита)
    Запрос на публикацию статьи

    Специальный выпуск по Advanced Micro / Наноматериалы для различных сенсорных приложений (избранные статьи из ICASI 2021)
    Приглашенный редактор, Шэн-Джуэ Янг (Национальный объединенный университет), Шоу-Джинн Чанг (Национальный университет Ченг Кунг), Лян-Вэнь Цзи (Национальный университет Формозы) и Yu-Jen Hsiao (Южно-Тайваньский университет науки и технологий)
    Веб-сайт конференции
    Запрос статьи

    Произошла ошибка при настройке вашего использования r Cookie

    Этот сайт использует файлы cookie для повышения производительности.Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


    Настройка вашего браузера для приема файлов cookie

    Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

    • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
    • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались.Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
    • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
    • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
    • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie.Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

    Почему этому сайту требуются файлы cookie?

    Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


    Что сохраняется в файле cookie?

    Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

    Как правило, в cookie-файлах может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

    % PDF-1.4 % 1 0 объект > поток 2020-10-19T14: 54: 23-05: 00pdftk 1.44 — www.pdftk.com2021-10-23T04: 44: 39-07: 002021-10-23T04: 44: 39-07: 00iText 4.2.0 от 1T3XTuid: c53f7b56-db8b-4b42-964c-2003c6b341a7xmp.did: 3584EC314AF01EDAEB11 .did: 3584EC3AF01AEB11928ED80C61460534

  • savedxmp.iid: 3584EC3AF01AEB11928ED80C614605342020-10-31T02: 11: 05 + 05: 30 Adobe Bridge CS6 (Windows) / метаданные
  • application / pdf
  • Piotr Kosiński
  • Przemysław Brzyski
  • Zbigniew Suchorab
  • Grzegorz agód
  • конечный поток эндобдж 2 0 obj > эндобдж 3 0 obj > поток xXɎ6WF # T $} i% sH [U.мГ% ނ6 pW G4r & yǒƚYtmEz} qȪ a,: & ʷ-Jm8vKj 9 | _

    Механические свойства полиуретановых клеевых соединений в системе наружной теплоизоляции на основе минеральной ваты для деревянных каркасных зданий

    3.2. Кажущаяся плотность

    Как уже было определено в [40], кажущаяся плотность пенополиуретана является одним из ключевых параметров, существенно влияющих на физико-механические свойства продукта. Обобщенные результаты испытаний показывают, что отвержденный полиуретановый клей на связках толщиной 8 мм и 15 мм характеризовался кажущейся плотностью от 19.3 кг / м 3 до 25,3 кг / м 3 . Обычно кажущаяся плотность пенополиуретана зависит от ячеистой структуры [35,37]. Структуры с более крупными ячейками характеризуются меньшей кажущейся плотностью [37,40], что подтверждается результатами исследования. Наибольшие плотности были получены для образцов, взятых из связок толщиной 8 мм, сформированных в лабораторных условиях, при высокой температуре и низкой относительной влажности, а также при низкой температуре, составив 24,8 кг / м 3 , 24.6 кг / м 3 и 25,3 кг / м 3 соответственно. Согласно описанию, адгезионная структура в связках, образовавшихся в вышеупомянутых условиях, была однородной, клетки были однородными и четко очерченными, а их диаметр составлял до 300 мкм (a, c, d). Плотность клея в связях толщиной 15 мм и в связках толщиной 8 мм, образующихся при высокой температуре и высокой относительной влажности, для чего неоднородная структура и наличие ячеек с размером ок. Наблюдался диаметр 350 мкм (б, д, е), он был меньше и составил 19.3 кг / м 3 и 21,2 кг / м 3 соответственно. Как и ожидалось, плотность клея в связках была выше, чем плотность, определенная для свободно вспененного продукта, и составила 18 ± 2 кг / м 3 (). Ячейки в свободно наносимых продуктах достигают большего диаметра, чем в условиях ограниченного расширения продукта [13].

    Кажущаяся плотность полиуретанового клея в местах склейки, выполненных в различных термических и влажностных условиях. Планки погрешностей показывают значения стандартного отклонения.

    Обзор литературы показал, что кажущаяся плотность пенополиуретана варьируется в зависимости от концентрации воды в качестве вспенивателя.Кажущаяся плотность уменьшается с увеличением содержания вспенивателя [20,39,40]. Было определено [40], что плотность пенополиуретана снизилась с 116 кг / м 3 до 42 кг / м 3 при увеличении содержания воды с 0,1 до 3,0 частей на 100 частей на 100 частей. То же наблюдение было сделано при исследовании жестких пенополиуретанов с закрытыми порами на основе полиолов с низкой функциональностью [39]. Аналогичная тенденция наблюдалась и в этом исследовании. Кажущаяся плотность клея в соединениях, выполненных при низкой влажности (25 ± 2 ° C, 30 ± 5%), была на 15% выше, чем у клея в соединениях, выполненных при той же температуре, но при высокой влажности (25 ± 2 ° C). С, 90 ± 5%).

    3.3. Механические свойства

    Как уже упоминалось, перед запуском строительные изделия проверяются на соответствие строительной конструкции семи основным требованиям согласно CPR [21]. Что касается ETICS, прочность сцепления, прочность на сдвиг и модуль сдвига связующего клея являются одними из основных требований, которые определяют выполнение четвертого основного требования «безопасность в использовании» [5,6,25].

    Анализируя результаты испытаний прочности сцепления, представленные в, можно сделать вывод, что сцепление полиуретанового клея толщиной 8 мм для системы с MW и OSB, а также FGB и CPB имеет прочность сцепления, аналогичную контрольной. бетонная основа, используемая в качестве стандарта при испытаниях полиуретановых клеев для ETICS на основе пенополистирола.Для соединений, изготовленных в лабораторных условиях, прочность соединения составляла от 85 до 100 кПа, при высокой температуре и низкой относительной влажности от 83 до 93 кПа, при высокой температуре и высокой относительной влажности от 85 до 93 кПа и при низкой температуре от 81 до 89. кПа, а для систем с бетонным основанием — 89 кПа, 100 кПа, 87 кПа и 84 кПа соответственно. Анализируя минимальные значения прочности склеивания (значения в скобках), можно сделать вывод, что для скреплений толщиной 8 мм, выполненных в лабораторных условиях, она составляет от 64 до 81 кПа, при высокой температуре и низкой относительной влажности от 60 до 76 кПа, при высокой температуре и высокой относительной влажности от 69 до 77 кПа, а при низкой температуре от 62 до 78 кПа, а для систем с эталонным бетонным основанием — 72 кПа, 89 кПа, 77 кПа и 61 кПа соответственно.

    Результаты прочности адгезионных соединений для полиуретановых клеевых соединений, выполненных в различных термических и влажностных условиях. Планки погрешностей показывают значения стандартного отклонения. В скобках указано минимальное значение для серии.

    Как уже упоминалось, оценка пригодности использования ETICS проводится в соответствии с EAD 040083-00-0404 [5] и EAD 040089-00-0404 [6]. Сравнение значений прочности сцепления, полученных в нашем эксперименте, с критерием, указанным в [5,6] для полиуретановых клеев в ETICS на основе EPS, который составляет не менее 80 кПа для среднего значения и не менее 60 кПа для минимального значения, позволяет сделать вывод, что анализируемый раствор характеризуется адгезией на уровне выше указанных пороговых значений.Вышеизложенное можно рассматривать как важный показатель для более благоприятной оценки применимости полиуретанового клея в качестве компонента ETICS на основе минеральной ваты. Полученные результаты также соответствуют существенным характеристикам существующих на рынке полиуретановых клеев для ETICS на основе пенополистирола [9,10]. На сегодняшний день в литературе больше нет информации о характеристиках полиуретановых клеев в ETICS. Внимание исследователей было направлено на клеевые системы на основе цемента.Полученные результаты показывают, что прочность сцепления полиуретановых клеев значительно ниже, чем прочность сцепления между клеем на основе цемента и бетоном [5,31,32]. Как уже было определено в [31], прочность сцепления между клеем на цементной основе и бетоном после 28 дней в лабораторных условиях может достигать значений выше 250 кПа. В других работах отмечалась прочность связи на уровне до 1000 кПа [33]. Различие можно объяснить различиями в структуре и материальной природе пенополимеров и изделий на основе цемента [13].Однако, что касается прочности связи между клеем на основе цемента и бетоном после 28 дней в лабораторных условиях и 2 дней в воде, можно отметить прочность сцепления, аналогичную прочности сцепления полиуретановых клеев [9,10]. Испытание прочности связи между клеем на цементной основе и теплоизоляционным материалом проводится отдельно [5,6]. Как уже было определено в [31,32], это сильно зависит от типа изоляционного материала и модели повреждения. Для систем EPS были достигнуты значения в диапазоне от 120 кПа до 270 кПа и когезионный разрыв изоляционного материала [31,33,34].Однако для значений системы MW в диапазоне от 30 кПа до 80 кПа когезионные повреждения изоляционного материала были отмечены [5,9,10].

    В проведенных испытаниях было заметно влияние толщины связки. Как и ожидалось, для скреплений толщиной 15 мм были получены заметно более низкие значения прочности скрепления, чем для скреплений толщиной 8 мм. Результаты составили 71 кПа для OSB / 23/50/15, 73 кПа для FBG / 23/50/15, 76 кПа для CPB / 23/50/15 и 76 кПа для эталонного субстрата C / 23/50/15 ( ). Следовательно, по сравнению с прочностью склейки, полученной в тех же условиях, но с толщиной 8 мм, она была ниже на 16%, 19%, 24% и 15% соответственно.Эти различия обусловлены различиями в клеточной структуре адгезива [35]. Согласно опыту других исследователей, при более широких связях углекислый газ имеет способность образовывать более крупные пузырьки, что приводит к более пористой структуре [40]. Выполненный SEM-анализ показывает, что клетки диаметром менее 300 мкм преобладают в связке 8 мм (а). Ячейки клея в канале 15 мм были заметно больше. Преобладающие ячейки имели диаметр около 450 мкм и больше (b), поскольку предыдущее исследование показало, что более пористый пенополиуретан может иметь более низкую прочность на разрыв [37].Сравнивая результаты испытаний для клеев толщиной 15 мм с критерием, указанным для полиуретановых клеев в ETICS на основе EPS, составляющим не менее 80 кПа [5,6], можно видеть, что были получены значительно более низкие значения. В этом случае следует подумать об ограничении использования клея на подложках, где нет неровностей, требующих использования клеевых соединений толщиной 15 мм. Принимая во внимание, что отклонение от плоскостности OSB, FBG и CPR обычно составляет менее 5 мм [41,42], это условие не представляет серьезной проблемы.

    Была отмечена корреляция между прочностью сцепления и кажущейся плотностью клея. Как уже было определено [40], более высокая кажущаяся плотность пенополиуретана приводит к более высоким механическим свойствам. Подобный эффект наблюдался и в этом исследовании. Наибольшая прочность скрепления была получена для скреплений, разработанных в лабораторных условиях при высокой температуре и низкой относительной влажности, а также при низкой температуре, плотность которых составляла 24,8 кг / м 3 , 24,6 кг / м 3 и 25.3 кг / м 3 соответственно. Для связей, возникающих при высокой температуре и высокой относительной влажности, такой закономерности не наблюдалось.

    Анализ поперечных сечений образцов после испытаний четко указывает на когезионную модель повреждения. Для клеевых соединений толщиной 8 мм, выполненных в лабораторных условиях, при высокой температуре и низкой относительной влажности, а также при низкой температуре, преобладали повреждения внутри MW. В этих сериях средняя доля повреждений в пределах MW составляла от 80 до 95% (a и a – c), от 50 до 95% (b) и от 70 до 90% (d), соответственно.Вышеизложенное указывает на то, что прочность сцепления превышала прочность на разрыв при перпендикулярном растяжении самого теплоизоляционного материала. Аналогичный эффект наблюдался для ETICS на основе MW с клеем на основе цемента [32]. Когезионные повреждения наблюдались также для соединений, выполненных при высокой температуре и высокой относительной влажности, но с преимущественным повреждением полиуретанового клея. Доля повреждений в МВт колебалась от 35 до 48% (в). Когезионные повреждения внутри полиуретанового клея были также зарегистрированы для клеевых соединений толщиной 15 мм (а).Доля повреждений MW колебалась от 22% до 28%, что заметно ниже, чем для связок толщиной 8 мм, где она составляла от 80 до 95% (б). Опять же, эти различия можно объяснить различиями в ячеистой структуре клея. Более пористый полиуретановый клей может иметь меньшую прочность на разрыв [35,37,39].

    Модель повреждения — средние значения для серии: ( a ) 23/50/8, ( b ) 25/30/8, ( c ) 25/90/8 и ( d ) 5 / — / 8 (C / MW — когезионные повреждения в MW, C / PU — когезионные повреждения в полиуретановом клее).

    Иллюстрация модели повреждения связок толщиной 8 мм ( a ) Образец серии CPB / 23/50/8 — C / MW повреждение, ( b ) Образец серии OSB / 23/50/8 — C / Повреждение MW в сочетании с повреждением C / PU и ( c ) образец серии CPB / 23/50/8 — повреждение C / MW (C / MW — когезионное внутри MW, C / PU — когезионное внутри полиуретанового клея).

    Иллюстрация повреждения связок толщиной 15 мм ( a ) Образец серии OSB / 23/50/15, ( b ) средние значения для отдельных серий (C / MW — когезионные повреждения MW, C / PU — когезионное повреждение полиуретанового клея).

    Не наблюдалось значительного влияния типа обшивки (OSB, GFB и CPB) на прочность сцепления. То же наблюдение было сделано при исследовании клея на цементной основе [34]. В серии, подготовленной в лабораторных условиях, наибольшее значение было для CPB / 23/50 / 8—100 кПа, а наименьшее — для OSB / 23/50 / 8—85 кПа; в серии, приготовленной при высокой температуре и низкой относительной влажности, наибольшее значение было для CPB / 25/30 / 8–93 кПа, а наименьшее — для FGB / 25/30 / 8–83 кПа; для серий, приготовленных при высокой температуре и высокой относительной влажности, наибольшее значение было для CPB / 25/90 / 8–93 кПа, а наименьшее — для FGB / 25/90 / 8–85 кПа; а для серии, приготовленной при низкой температуре, наибольшее значение было для CPB / 5 / — / 8–89 кПа, а наименьшее — для OSB / 5 / — / 8–81 кПа.Вышеупомянутое указывает на то, что в процессе оценки характеристик можно рассмотреть возможность ограничения количества испытаний одним типом оболочки.

    Не наблюдалось влияния типа подложки на модель повреждения. Серия GFB / 25/30/8 немного выделила образцы в этом отношении, для которых, как и для серии OSB / 23/50/8, доля повреждений в полиуретановом клее была зафиксирована на уровне 50%, а для образцов на других участках. субстратов он составлял от 5 до 25%. В остальных сериях испытаний такой закономерности не наблюдалось.

    Обобщая экспериментальные данные по прочности сцепления, полученные в этом исследовании, можно констатировать, что испытанный полиуретановый клей показал удовлетворительную адгезию как к минеральной вате (MW), так и к плитам, типичным для обшивки стен из плит с ориентированной стружечной структурой (OSB). , гипсоволокнистые плиты (FGB) или цементно-стружечные плиты (CPB). Связывание повреждения, преимущественно внутри теплоизоляционного материала, указывает на то, что прочность сцепления полиуретановых адгезионных связей может превышать перпендикулярную прочность на разрыв самого теплоизоляционного материала.Также следует отметить, что в испытаниях использовалась пластина из минеральной ваты без покрытий или облицовки с прочностью на перпендикулярное растяжение ≥80 кПа (TR80). Фактором, определяющим прочность соединения, была, как и ожидалось, толщина клеевого соединения. Увеличение толщины с 8 мм до 15 мм привело к снижению прочности сцепления примерно на 20%. Также было описано влияние термических и влажностных условий, при которых склеивание было выполнено и отверждено. Самые низкие значения прочности связи были зарегистрированы для серии, приготовленной при низкой температуре, затем — при высокой температуре и высокой относительной влажности, высокой температуре и низкой относительной влажности, а самые высокие — в лабораторных условиях.Напротив, следует отметить, что только в серии, приготовленной при высокой температуре и высокой относительной влажности, преобладали повреждения полиуретанового клея. Напротив, в других случаях преобладали повреждения МВ, поэтому решающее влияние на полученные значения оказали свойства теплоизоляционного материала. Не наблюдалось влияния типа основания (OSB, FGB, CPB или бетон) на прочность склеивания.

    Прочность на сдвиг и модуль сдвига были проанализированы с точки зрения влияния типа основания, принимая во внимание стандарты плит для обшивки деревянных каркасных стен и адгезионные соединения в термических и влажностных условиях.Значения прочности на сдвиг показаны в, а значения модуля сдвига показаны в. Наибольшие значения рассматриваемых свойств были зафиксированы для образцов, приготовленных при высокой температуре и низкой относительной влажности, с получением прочности на сдвиг 55 кПа для OSB / 25/30 серии, 75 кПа для FGB / 25/30 и 69 кПа для CPB / 25. / 30 и модуль сдвига 605 кПа, 920 кПа и 940 кПа соответственно. Склеивания, полученные при высокой температуре и высокой относительной влажности, показали значительно более низкие значения своих свойств, что может быть продиктовано различием в структуре ячеек клея ().Была получена прочность на сдвиг 56 кПа для серии OSB / 25/90, 52 кПа для серии FGB / 25/90 и 52 кПа для серии CPB / 25/90, а для модуля сдвига она составила 455 кПа, 510 кПа и 590 кПа. , соответственно. Свойства скреплений, полученных при низкой температуре, имели средние значения, за исключением прочности на сдвиг связок OSB / 5 / -, где было зафиксировано значение 71 кПа, тогда как оно составляло 57 кПа для FGB / 5 / и 47 кПа для CPB. / 5 / -. Модуль сдвига составлял 610 кПа, 720 кПа и 660 кПа соответственно. Все испытанные образцы оказались уязвимыми к когезионным повреждениям на 100% в пределах адгезионного соединения, что подтверждает высокую адгезию полиуретанового клея ко всем рассматриваемым субстратам — OSB, FGB и CPB — зарегистрированные испытания прочности сцепления.Существенного влияния типа подложки на рассматриваемые свойства не наблюдалось.

    Результаты испытаний на прочность на сдвиг соединений, выполненных в различных термических и влажностных условиях. Планки погрешностей показывают значения стандартного отклонения. Данные дополнены описанием повреждения: C / PU — нарушение когезии в полиуретановом клее.

    Результаты испытаний на модуль сдвига соединений, выполненных в различных термических и влажностных условиях (полосы погрешностей показывают значения стандартного отклонения).

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *