8-3842-33-85-00 - магазин жидких обоев

г. Кемерово, Рынок "Привоз" бокс №1

Мощность солнечного коллектора: Упрощённый тепловой расчет солнечного коллектора – Экономим электричество: расчеты производительности солнечного коллектора

Содержание

Экономим электричество: расчеты производительности солнечного коллектора

В статье будет рассмотрен наиболее простой метод расчета количества энергии, которую можно получить путем применения солнечного коллектора. Статистика гласит, что в среднем в домашнем хозяйстве для использования горячей воды требуется от 2 до 4 кВт. Тепловой энергии в день на 1 человека.

Расчет мощности солнечного коллектора

В качестве примера будут приведены расчеты коллектора для Московской области.

Данные для расчетов:

  1. Место применения – Московская область Площадь поглощения – 2,35м2 (на основе таблицы о среднем количестве поступления солнечной энергии для регионов РФ)
  2. Величина инсоляция в Московской области – 1173,7кВт*час/м2
  3. КПД – от 67% до 80% (будут использованы минимальные показатели, актуальные для устаревших коллекторов, поэтому результаты будут слегка занижены).
  4. Угол наклона коллектора – в расчетах будут использованы оптимальные данные угла наклона.

карта инсоляции россии

Рассчитываем площадь поглощения для одной трубки:

15 трубок = 2,35 м. кв.; 1 трубка = 2,35 / 15 = 0,15 м. кв.

Теперь, когда известна площадь, которую поглощает одна трубка, определим количество трубок, составляющий 1 м. кв. поверхности коллектора: 1 / 0,15 = 6, 66. Иными словами, на один метр поверхности поглощения требуется 7 трубок коллектора.

Далее производим расчет тепловой мощности одной трубки коллектора. Это даст возможность рассчитать число трубок, необходимых для получения достаточной тепловой энергии на периоды в один день и один год:



Получаемая мощность в расчете на один день рассчитывается следующим образом: 0,15 (S поглощения 1 трубки) x 1173,7 (величина инсоляции в Московской области) x 0,67 (КПД солнечного коллектора) = 117,95 кВт*час/м. кв

.

Для расчета годовой эффективности одной трубки в выбранном регионе в формуле для расчета дневной мощности следует использовать годовые инсоляционные данные. Иначе говоря, на место 1173, 7 необходимо поставить региональное значения инсоляции.

Мощность, вырабатываемая при помощи одной трубки в Москве, составляет от 117,95 (при использовании КПД в размере 67%) до 140кВт*час/м.кв. (при использовании КПД в размере 80%).

В среднем за сутки одна вакуумная трубка теплового коллектора вырабатывает 0,325кВт*час.

В наиболее солнечные месяцы (июнь, июль) одна трубка будет производить 0,545кВт*час.

Работа солнечного коллектора без света невозможна, по этой причине указанные показатели нужно использовать при расчете светового дня.

Сколько можно сэкономить электроэнергии в Москве при использовании одного м. кв. коллектора (как мы выяснили, это 7 вакуумных трубок)?

Годовая экономия энергии составит:

117,95 кВт*час/м2 * 7 = 825,6 кВт*час/м.кв.

Наибольшую мощность солнечный коллектор, соответственно, будет вырабатывать в летние месяцы. К примеру, в июне при использовании 1 м.кв. коллектора выработка электроэнергии составит около 115–117 кВт*час/м.кв.

Иначе говоря, энергетическая польза при использовании солнечного коллектора с 15-ю вакуумными трубками, где S=2,35 м.кв. за период с марта по август при суммарном значении инсоляции за весь указанный период в 874,2 кВт*час/м.кв. составит: 874,2 * 2,35 * 0,67 = 1376 кВт, то есть, практически 1,4 МегаВт. энергии, что в день составляет примерно 8 кВт.

Вспомним статистическую информацию, приведенную в первой части статьи – в домохозяйстве используется от 2 до 4 кВт энергии при потреблении горячей воды одним человеком ежедневно. Данные показатели подразумевают использование коллектора для нагрева горячей воды и, в частности, таких нужд как принятие душа, мытье посуды и т.п.

Расчеты солнечного коллектора, состоящего из 15 вакуумных трубок, позволяют сделать вывод о том, что в огородный сезон данного устройства будет достаточно для того чтобы обеспечить горячей водой семью, состоящую из трех человек. В результате, при учете всех неблагоприятных обстоятельств, таких как пасмурная или дождливая погода, на электроэнергии, используемой для подогрева воды, можно очень неплохо сэкономить.

Если же говорить об оптимальных условиях (солнечная погода и отсутствие дождей), то в данном случае выработка тепловой энергии солнечным коллектором позволит вообще избежать необходимости платить за электроэнергию.

Примечания

Если в таблице с расчетами солнечной энергии в различных регионах РФ нет точной информации о регионе, в котором Вы проживаете, то можно воспользоваться информацией, которая указана на инсоляционной карте России. Это позволит узнать приблизительное значение получаемой тепловой энергии в расчете на один квадратный метр.

Эмпирическим путем определено: чтобы рассчитать инсоляцию для наиболее оптимального угла наклона солнечного коллектора, следует данные, указанные для выбранной площади, умножить на коэффициент 1,2.

Определение угла наклона солнечных коллекторов

К примеру, в таблице указано, что для Москвы значение энергии, которое доступно на протяжении светового дня, составляет 2,63 кВт*ч/м.кв. Иначе говоря, доступная годовая энергия составляет 2,63 * 365 = 960 кВт*ч/м.кв.

Таким образом, при оптимальном наклоне площадки в Москве коллектор будет вырабатывать приблизительно 1174 кВт*ч/м.кв.

Конечно, данный метод расчета не является высоконаучным, однако, с другой стороны, полученные данные вполне можно использовать для определения необходимого количества вакуумных трубок на бытовом уровне.

Итоги

Солнечные коллекторы из года в год обретают все большую популярность среди владельцев дачных участков. Очевидно, что это говорит о том, что данное устройство позволяет существенно сэкономить электроэнергию при нагреве воды, что подробно описано и доказано в вышеизложенных расчетных примерах.

Данный агрегат является актуальным практически для любого региона России. Но прежде чем купить солнечный коллектор, лучше посчитать рентабельности и сроки окупаемости этого оборудования, что позволит убедиться в актуальности представленного инновационного оборудования для применения в Вашем регионе.


Дата публикации: 30 мая 2014




Оставить комментарий

Вы должны быть Войти, чтобы оставлять комментарии.

Расчет солнечного коллектора для отопления дома и ГВС

Использование гелиоколлекторов для системы теплоснабжения – способ существенно сэкономить на отоплении дома. Солнечное излучение бесплатно и доступно всем, а стоимость гелиосистем постоянно снижается. Правильный расчет солнечного коллектора для отопления дома позволит избежать лишних затрат на оборудование и организовать эффективную систему обогрева здания.

Большинство производителей, поставщиков и установщиков делают лишь приблизительный расчет солнечных коллекторов, но мы опишем все детально. В статье мы пошагово расскажем, как выполнить расчет гелиосистем для отопления, чтобы полностью обеспечить дом теплом зимой. Пусть вас не пугает количество формул – для подсчета потребуется обычный калькулятор. Ваши вопросы и мнение вы можете оставить в комментариях.

Расчет реальной мощности солнечного коллектора

Производители указывают максимальную мощность гелиоколлектора при полном освещении при направлении на юг и ориентации перпендикулярно солнцу в полдень. Но не всегда можно так направить панели, особенно если их устанавливать крыше дома.

Ниже приводим формулы, которые универсальны и могут использоваться как для подсчета количества коллекторов, так для подсчета общей площади в квадратных метрах.

Подсчет эффективности гелиоколлектора по направлению

Рассчитать базовую тепловую производительность солнечного плоского или вакуумного коллектора можно по следующей формуле:

Pv = sin A x Pmax x S

Значения:

  • Pv – мощность солнечного коллектора;
  • A – угол отклонения плоскости гелиоколлектора от направления на юг;
  • Pmax – средний уровень инсоляции в вашем регионе в холодное время года.

Даже если солнце не скрыто облаками, в течении дня уровень инсоляции меняется, от чего зависит производительность коллектора. Усредненные данные видно на этом графике:

Дневной уровень инсоляции
Данные на иллюстрации по дневному уровню инсоляции усредненные, но позволяют понять разницу между количеством тепловой энергии, которую можно получить в разное время года.

Максимальный уровень инсоляции зимой в среднем в 3-4 раза меньше, чем летом. Количество солнечной энергии, которую может получить гелиоколлектор за сутки зимой в 5-7 раз ниже (в зависимости от широты) чем летом.

Расчет производительности гелиоколлектора по углу установки

Оптимальный угол установки солнечного коллектора для отопления дома зимой – так, чтобы он был перпендикулярен солнечным лучам в 10 часов утра. Так он может собрать максимум тепловой энергии на протяжении светового дня.

Иногда не получается этого сделать (при установке на крыше, монтаже на стандартных опорах). Из-за отклонения от оптимального угла энергоэффективность коллектора может измениться. Рассчитать ее можно по такой формуле:

Pm = sin(180 — A — B) x Pv

Последние публикации:

Значения:

  • Pm – производительность гелиоколлектора;
  • A – угол между коллектором и плоскостью земли;
  • B – высота солнца над горизонтом в 10 часов утра;
  • Pv – найденная ранее мощность.

Если у вас есть возможность ориентировать солнечный коллектор так, чтобы он был перпендикулярен солнцу, тогда:

Pm = Pv Угол наклона солнечного коллектора на стандартной опоре

На фотографии обозначен угол наклона солнечного коллектора, который нужно использовать при вычислениях.

Особенности плоских панелей

Плоский гелиоколлектор имеет небольшие теплопотери через заднюю стенку, которые составляют в среднем 5 Вт на квадратный метр. Поэтому от полученного ранее значения реальной мощности P надо отнять 5 Вт на каждый квадратный метр площади.

Уровень поглощения солнечного излучения плоского гелиоколлектора ниже 100%. Это нужно учесть при подсчете его тепловой мощности. Если панель поглощает только 95%, то ее реальная мощность:

P = Pm x 0.95 х S

Значения:

  • Pm – мощность коллектора из формулы выше;
  • P – реальная производительность коллектора;
  • S – площадь коллектора.

Производительность вакуумного коллектора

Производители вакуумных коллекторов могут указывать мощность коллектора без учета расстояния между трубками. Чтобы определить, какова реальна площадь поверхности трубок и производительность вакуумного коллектора, воспользуемся формулой:

P = Pm x D / L

Последние публикации:

Обозначения:

  • P – реальная производительность солнечного коллектора;
  • Pm – мощность коллектора, рассчитанная ранее;
  • D – диаметр вакуумных трубок;
  • L – расстояние между трубками.

Термодинамические солнечные панели

С таким типом коллекторов все гораздо сложнее. Сейчас они не слишком распространены, производители экспериментируют с материалами и селективным покрытием. Разные модели отличаются уровнем поглощения и теплопотерями.

В целом, термодинамические солнечные панели имеют право на жизнь. Но мы бы не рекомендовали обустраивать отопление с их помощью. На рынке мало эффективных моделей, а те, которые есть, продают по завышенным ценам.

Сколько нужно солнечных коллекторов для отопления дома?

Независимо от того, какая система отопления установлена в доме, теплопотери у него будут одинаковыми. Для точного просчета лучше обратиться к специалистам, но для получения примерных данных можно использовать онлайн-сервисы http://teplo-info.com/otoplenie/raschet_teplopoter_online.

Разделив полученные данные на значение P, вычисленное по последней формуле, вы узнаете, сколько гелиоколлекторов или квадратных метров коллекторов вам необходимо чтобы обеспечить отопление дома зимой.

Отдельно стоит напомнить, что в холодное время года есть нюансы с эксплуатацией гелиоколлекторов. Узнать об этом больше можно в статье «Как работает солнечный коллектор зимой – эффективность, проблемы и их решение».

Плоский солнечный коллектор зимой на крышеОсновная проблема змой — чистить коллекторы от холода.

Подключим горячее водоснабжение?

В дополнение к отоплению, к коллекторной солнечной системе можно подключить горячее водоснабжение. Для этого подсчитаем, сколько тепловой энергии вам необходимо тратить каждый день. Формула проста:

Pw = 1,163 x V x (T – t) / 24

Обозначения:

Последние публикации:

  • Pw – количество тепла, необходимое для подогрева воды;
  • V – средний объем горячей воды, расходуемый за сутки;
  • T – температура, до которой нужно подогреть воду;
  • t – температура, с которой вода поступает в систему.

Чтобы рассчитать необходимое количество дополнительных коллекторов для ГВС – разделите это значение на производительность солнечного коллектора P, полученное по последней формуле.

Советы по отоплению дома гелиоколлекторами

  • Плоские солнечные коллекторы эффективнее в теплое время года, а вакуумные трубки – зимой. В зависимости от модели и производителя разница может достигать 50%. Подробнее об этом вы можете прочитать в статье «Солнечный коллектор – плоский или вакуумный?».
  • На случай непредвиденной ситуации стоит иметь альтернативные источники тепловой энергии – конвекторы, газовый или твердотопливный котел, тепловой насос.
  • Обычно коллекторы поставляются вместе с отдельными баками-накопителями. Выгоднее будет приобрести отдельно плоские или вакуумные панели и один или два больших резервуара с хорошей теплоизоляцией. Чем меньше объем бака, тем быстрее он остывает.
  • Для организации эффективного отопления стоит иметь большой бак накопитель, в котором в светлое время суток коллекторы будут нагревать воду, а ночью она будет расходоваться на обогрев здания.
  • Наличие качественного контроллера в системе отопления позволит поддерживать заданную температуру, регулировать циркуляцию, устанавливать температурные режимы, задавать таймер включения.
  • Для автономного отопления дома солнечными коллекторами необходимо купить большое количество оборудования, оплатить его монтаж и подключение. Если вам это не по карману – можно использовать гелиоколлекторы как вспомогательную систему отопления.
  • Хорошей экономии можно достичь если использовать солнечные коллекторы в паре с тепловым насосом. Они будут нагревать воду, а тепловой насос – подогревать ее до необходимой температуры.
  • Если здание плохо утеплено, то использовать солнечные коллекторы эффективнее с водяным теплым полом. Он отдает максимум тепла в помещение, а не стенам, как радиаторы отопления.

Как видим, расчет солнечных коллекторов для отопления дома довольно прост. Конечно, специалист должен будет посчитать множество других нюансов, но они не смогут существенно повлиять на конечный результат. В некоторых случаях обогрев здания коллекторами нецелесообразен, но в качестве дополнительного источника бесплатного тепла, гелиоколлекторы незаменимы.

Не забудьте поделиться публикацией в соцсетях!

Мощность солнечного коллектора | Блог SolarSoul

Целью гелиосистемы, как известно, является производство теплой энергии. Основной элемент системы — солнечный коллектор. Об эффективности солнечного коллектора мы уже имеем представление и теперь можем поговорить о том, сколько тепловой энергии сможет дать нам солнечный коллектор.

Мощность солнечного коллектора

Максимальная мощность коллектора определяется произведением максимального значения солнечного излучения на единицу площади поверхности (1000 Вт/м²) и оптического коэффициента полезного действия коллектора: Q= η₀E. Напомню, что это при условии, что температура наружного воздуха такая же, как в самом коллекторе.  Обычно, для плоского коллектора значение оптического КПД около 80%. Из этого следует, что максимальная мощность одного метра квадратного солнечного коллектора 800 Вт. Это значение достигается крайне редко, и как только температура воздуха и снижается относительно температуры в солнечном коллекторе, возникают тепловые потери, которые снижают это значение. Все это легко увидеть исходя из формулы КПД солнечного коллектора: 

Для примера рассчитаем мощность солнечного коллектора при разнице температур 45 °С между температурой воздуха и температурой в солнечном коллекторе и максимальной солнечной мощности:  КПД будет равно:

 

η= 0,79-3,66*45/1000-0,0099*2025/1000= 0,6;

 

От сюда следует, что значение мощности для одного квадратного метра площади коллектора (для примера были взяты паспортные данные солнечного коллектора Biotech Energietechnik GmbH BSK240 производства Германии) будет равно произведению КПД на мощность солнечного излучения: Q= ηE и равно 600 Вт.

 

Значение постоянно меняется в течение всего дня и зависит от количества солнечной энергии попадающей на плоскость коллектора и разницы температуры между окружающим воздухом и коллектором, это значение называют удельной мощностью солнечного коллектора оно измеряется в Вт/м².

Обычно для расчетов применяют  значение удельной мощности в пределах от 500 до 600 Вт/м².

Поделиться «Мощность солнечного коллектора»

Рекомендуемые статьи

производительность солнечного коллектора | Блог SolarSoul

Для расчета гелиосистемы и подбора оборудования очень важным параметром является ожидаемая производительность солнечного коллектора.

Производительность равна произведению средней ожидаемой мощности солнечного коллектора [кВт] на единицу времени [ч]. Полученное значение соответствует определенному количеству энергии и измеряется в [ кВт·ч]. Как правило, это значение относят к квадратному метру апертурной площади солнечного коллектора или общей площади, т.е. является удельным значением с единицей измерения [кВт·ч/м²].  Данное значения, так же зависит от мощности солнечного излучения и очень важно при конструировании гелиосистемы и для расчета объема бака аккумулятора, для этого удельное значение относят к определенному количеству дней.

Основной задачей при проектировании солнечной системы является достижения оптимального значения производительности солнечного коллектора и всей установки в целом, ведь при эксплуатации гелиосистемы могут возникнуть режимы, при которых коллектор может передавать энергию, но бак аккумулятор уже нагрет. В таком случае производительность солнечного коллектора равна нулю.

Может быть и наоборот, что солнечный коллектор не обеспечивает в полной мере потребности в тепловой энергии при хороших погодных условиях. Эти проблемы могут возникнуть из-за различных причин: затенение коллектора, неоптимальное ориентирование по сторонам света и недостаточный (чрезмерный) угол наклона солнечного коллектора, неправильно подобрано насосное оборудование и т.д.

Чтобы наиболее точно оценить ожидаемую производительность солнечного коллектора при проектировании часто используют программное обеспечение. Это позволяет получить усредненные данные и смоделировать работу системы в различных регионах Земли.

С помощью программы T-Sol смоделируем работу солнечной гелиосистемы при двух разных условиях ориентирования солнечных коллекторов. Данный расчет поможет увидеть разницу в производительности при разных условиях ориентации коллекторов в одинаковых условиях работы и конструкции системы. В первом варианте коллекторы установлены под углом 60° и отклоненs от южного направления на 45°. Во втором, угол наклона равен 45° и коллекторы ориентированы строго на юг.  В качестве образца все расчеты приведены для г. Москва (широта 55.75°).

Ориентация коллекторов относительно юга и горизонта

Условия для расчета:

  • потребление воды 160л/сутки;
  • температура нагрева воды 50°С;
  • температура холодной воды от 2°С до 10°С.

Схема состоит из двух солнечных коллекторов HEWALEX KS 2000 TP (коллекторы выбраны произвольно в качестве образца) и бака аккумулятора на 200 литров.

Схема гелиосистемы для моделирования

Подставив все значения, получаем графики производительности солнечных системы для двух вариантов:

Графики производительности солнечных коллекторов

Из расчетов видно, что система 2 выработала на 118 кВт·ч  энергии больше в год,  чем первая, за счет более удачного ориентирования коллекторов. При пересчете на 1 м² апертурной площади, в первом варианте производительность равна 381,8 кВт·ч/м², во втором 414,3 кВт·ч/м².

Поделиться «Производительность солнечного коллектора»

Рекомендуемые статьи

расчет воздушной конструкции, вакуумный вариант для использования зимой своими руками, отзывы

На сегодняшний день появилась возможность сократить расходы на отопление. Все это реально благодаря солнечным коллекторам, которые представляют собой уникальные системы, позволяющие бесплатно получать экологический источник чистой энергии. Их можно активно использовать как для отопления небольших дачных домиков, так и коттеджей.

Особенности и устройство

Солнечный коллектор – это современная конструкция, которая способна накапливать солнечную энергию и превращать ее в источник тепла. Устройство изготавливают из металлических пластин, покрашенных в черный цвет и заключенных в корпус из стекла. Такое оборудование можно устанавливать для отопления дома, а также для обеспечения систем горячей водой.

Благодаря установке коллектора можно экономить от 30 до 60% энергоносителей, а это означает, что расходы на электричество и газ значительно снижаются и эксплуатация дома удешевляется. Подключенное в систему теплоснабжения устройство играет роль теплового носителя, который круглосуточно поддерживает температуру согласно санитарным и технологическим нормам.

Конструкция солнечного коллектора представлена в виде системы трубок, последовательно соединенных между собой и имеющих входную и выходную магистраль. По трубкам может проходить как воздушный поток, так и техническая вода. Во время циркуляции вещества наблюдается его переход из одного агрегатного состояния в другое, в результате чего происходит выделение тепла. То есть, принцип действия батареи заключается в накоплении энергии фотоэлементами, ее концентрации и передачи.

Помимо трубок, конструкция также имеет специальный бак, где хранится вода в нагретом состоянии. Чтобы жидкость не охлаждалась, бак дополнительно обшивают качественной теплоизоляцией. Кроме это, в емкость монтируют и дублирующий электронагреватель, который автоматически включается в зимний период или при пасмурной погоде. Корпус коллектора, как правило, изготавливают из стекла, так как использование полимерных материалов не рекомендуется. Они обладают высоким показателем теплового расширения, неустойчивы к лучам ультрафиолета, что может привести к разгерметизации корпуса.

В качестве теплоносителя обычно выбирают воду, но если планируется круглогодичная эксплуатация системы, то нужно до наступления холодов техническую жидкость заменять антифризом. Часто теплоносителем в коллекторах выступает и воздух, каналы для его перемещения делают из профлистов.

Для отопления небольших строений применяют обычные конструкции, для автономных и централизованных систем в схему добавляют не только нагревательное оборудование, но и циркуляционные насосы.

К главным преимуществам солнечных агрегатов можно отнести:

  • возможность бесперебойного обогрева зданий круглый год;
  • долгий срок эксплуатации, достигающий 30 лет;
  • экономия энергоресурсов;
  • возможность одновременного обогрева помещений, теплиц, пристроек и бассейнов;
  • отсутствие отходов;
  • быстрый монтаж;
  • оптимизация под индивидуальные проекты.

Что же касается недостатков, то их немного:

  • высокая стоимость установки;
  • низкая эффективность работы устройства, обусловленная климатическими условиями и особенностями ландшафта;
  • принудительная циркуляция воды.

Виды

Существует множество видов солнечных коллекторов, все они отличаются между собой особенностью конструкций, но одинаково выполняют роль теплоносителя и используются для обогрева домов. На сегодняшний день различают следующие типы устройств:

Плоский

Считается самым распространенным вариантом для установки в современных системах гелиоэнергетики. Он состоит из абсорбера, термоизолирующего покрытия, прозрачного слоя и теплоносительной трубки. Популярность данного вида обусловлена простотой монтажа и доступной ценой, но в отличие от других коллекторов для него характерно небольшое КПД. Внешне устройство имеет вид стальной или алюминиевой панели площадью от 2 до 2,5 м2.

Снаружи панель покрывают листами из гелиостекла, это позволяет максимально поглощать энергию солнца и поставлять ее с минимальными потерями. Под стеклом располагается специальный поглотитель в виде плоской трубки, его изготавливают из сплавов алюминия или меди. Трубка оснащена радиальным оребрением, поэтому во время рабочего процесса наблюдается высокий КПД.

Плоский коллектор годится только для обогрева частного дома, так как с его помощью зимой можно отопить небольшую площадь.

Вакуумный

Это дорогостоящее устройство, которое имеет отличные эксплуатационные характеристики. Батарея представляет собой ряд, состоящий из парных стеклянных трубок. Из пространства между ними откачивают воздух и выполняют спайку, образованный таким образом вакуум служит хорошим теплоизолятором и снижает потери энергии. Верхние трубки вставляются в распределитель, где циркулирует сам теплоноситель. В зависимости от распределения тепла такие коллекторы бывают прямоточные и с плоской трубкой.

Воздушный

Данное устройство предназначено для топки зданий за счет нагрева воздушных масс. Потоки воздуха поступают в систему через поглотитель и естественным путем или принудительно поставляются в теплообменник. Недостатком коллектора считается то, что в отличие от жидких видов, в нем тепло проводится не так хорошо. Но подобная система характеризуется несложной конструкцией и легко управляется. Если соблюдать все правила эксплуатации, то коллектор исправно прослужит более 20 лет.

Водяной

Внешне имеет сходство с вакуумным устройством, но в его конструкции в трубках под определенным углом располагается жидкость. Трубки присоединяются к баку, из которого горячая вода передается в систему и возвращается. Главным достоинством агрегата является, то что для его монтажа не нужно применять дополнительные элементы. Некоторые модели таких коллекторов могут также работать и без бака. Во время эксплуатации водяного коллектора при температурном режиме ниже -10 С необходимо заливать незамерзающую жидкость.

Как выбрать?

Перед тем как заняться установкой солнечного коллектора, необходимо правильно подобрать соответствующий вид устройства, так как от этого будет зависеть эффективность его работы и коэффициент теплообмена.

Поэтому, отправляясь за покупкой, стоит учесть следующие нюансы:

  • Лучше всего отдавать предпочтение плоским моделям, так как они считаются самыми прочными и имеют положительные отзывы потребителей. Их агрегат способен нагревать воду свыше 40 С, но если батарея выходит из строя, то придется заменять всю систему адсорбции. Вакуумные виды устройств характеризуются быстрым повреждениям трубок и очень чувствительны к внешним воздействиям. Но стоит заметить, что ремонт изделия выполняется просто, так как заменяется только конкретная колба. Зато в зимнее время года такие батареи хорошо поддерживают температуру, в этом их плюс.
  • Что же касается воздушных коллекторов, то они редко выходят из строя и не требуют ремонта. Кроме этого, они надежно выдерживают низкую температуру и долговечны в использовании. Единственное, что подобные устройства не подойдут для отопления больших зданий, так как слабо прогревают помещения.
  • Немаловажным показателем для выбора является и размер трубок, от которого зависит эффективность преобразования солнечной энергии. Трубка мелкого диаметра снижает процесс выработки энергии. Поэтому желательно приобретать коллекторы, имеющие в конструкции несколько больших колб шириной до 6 см и длиной до 2 м.
  • Особое внимание следует уделять мощности батарей. Системы с низким сохранением тепла нельзя использовать при низкой температуре. В частности, это касается моделей с водяной тепло подачей.
  • Монтаж установки должен выполняться после предварительного проектирования. Для этого нужно знать размеры батарей, которые бы подходили для крепления к крыше.
  • Можно покупать коллекторы как с вертикальным, так и горизонтальным расположением. При этом вертикальные конструкции издавать от проблем с очисткой от снега, но их КПД будет низким. Чтобы этого избежать, нужно до установки предусмотреть место для исхода осадков.

Расчет

Солнечная энергия является идеальным источником для отопления зданий. Чтобы ее максимально преобразить в тепло, необходимо точно рассчитать затраты ресурсов и мощность установок, учитывая тип агрегата и его месторасположение. В первую очередь нужно знать какое количество энергии попадает на поверхность панели. Как известно, на 1 м2 поверхности попадает около 1367 Вт солнечной энергии, но проходя сквозь слои атмосферы, мощность теряется до 500 Вт. В связи с этим для средних расчетов берется условное значение 800 Вт.

Солнечный коллектор является рабочей станцией, основание которой защищено антибликовым покрытием и стеклом. Благодаря тому, что основание покрыто черной краской, наблюдается 100% поглощение энергии. Так как в состав батарей входит теплоизоляция, то можно определить коэффициент потери тепла. Для каждого материала он разный, но изоляцию коллекторов часто выполняют на основе минваты, поэтому для простых расчетов берется показатель 0,045. Предполагая то, что температурная разница между внешним и внутренним слоем теплоизоляции не превышает 50 С, потери энергии составят: 0,045: 0,1 × 50 = 22,5 Вт.

Аналогичны будут потери и для труб, поэтому суммарный показатель получится 45 Вт. Поэтому чтобы нагреть 1 л воды на 1 С, потребуется мощность энергии в 1,16 Вт. Определив эти величины, можно легко узнать объем жидкости, который можно нагреть батареей с рабочей площадью 1 м2 за один час: 800: 1,16 = 689,65. Чтобы улучшить теплопередачу, агрегаты лучше всего размещать с ориентацией на юг.

Важным расчетом считается, и рабочая площадь батареи. Для этого количество нужной энергии нужно разделить на 800 Вт и получится искомое значение. Но стоит обратить внимание, что данный показатель соответствует площади агрегата, рассчитанного на обслуживание одного человека. Поэтому если в доме проживает семья, состоящая из двух, трех и более человек, то значение следует увеличить.

Изготовление

Солнечный агрегат можно не только самостоятельно установить, но и изготовить своими руками. Самодельный коллектор может быть как вакуумный, так и воздушный или плоский.

Что выполнить монтаж устройства понадобятся следующих элементы:

  • датчики температурного режима;
  • переходники ведущие к системе подключения холодного и горячего водоснабжения;
  • водосток для выхода горячей воды;
  • регулятор солнечной энергии;
  • емкость или бак;
  • циркуляционный насос;
  • датчики контроля подогрева воды.

Подключение и сборку всех составляющих конструкции следует выполнять согласно проекту, придерживаясь инструкции:

  • На первом этапе определяются с размерами будущего коллектора. Для этого точно рассчитывают площадь его размещения и интенсивность солнечной энергии. Важно обратить внимание на расположение здания, где планируется установка системы, в зависимости от полученных показателей выбирается материал для нагревательного контура.
  • Следующим шагом будет сборка устройства, во время которой изготавливается короб, радиатор, накопитель и теплообменник. Коробку можно сделать из обрезной доски толщиной не менее 5 мм, ее днище укрывают оцинкованный листом и дополнительно укладывают пенопласт, который послужит хорошей теплоизоляцией. Для теплообменника используют трубки длиной 1,6 м, их должно быть 15 шт., их собирают в цельную конструкцию, соблюдая шаг 4,5 см. Чтобы улучшить поглощение лучей, дно коробки красят в темный цвет, затем устанавливают в качестве перегородок стекло и стыки герметизируют.

В качестве основного накопителя можно применять как сосуд объемом от 140 до 380 л, так и другие сваренные конструкции или бочки. Емкость должна быть хорошо изолирована от потерь тепла, поэтому аванкамеру оборудуют дополнительно шарнирным краном. Вначале монтируется аванкамера и тепло накопитель, затем полученную конструкцию размещают под углом 35–40.

Между накопителем и теплообменником делается расстояние в 70 см, иначе потери тепловой энергии будут значительны.

  • Завершающим этапом считается ввод оборудования в эксплуатацию. Полученную конструкцию присоединяют к водопроводу. Для этого требуется запорная арматура. Устройство заполняют водой и присоединяют аванкамеру. Затем важно проверить уровень жидкости и отсутствие утечек воды. После контроля, самодельный коллектор готов к эксплуатации.

Советы

Установка солнечных систем позволяет экономить электроэнергию, обеспечивая дом «бесплатным» теплом и горячей водой. Но выбирая данный вид устройств, нужно помнить, что эффективность системы будет значительно снижаться вечером и утром, так как основной объем энергии вырабатывается при ярком солнце. Чтобы солнечные коллекторы надежно прослужили много лет и бесперебойно обеспечивали здание теплом, при их выборе и монтаже необходимо учесть следующие рекомендации специалистов:

  • Покупая батарею, следует уточнить можно ли ее эксплуатировать зимой и какая мощность системы.
  • Если коллектор собирается самостоятельно, то нижнюю часть его теплообменника нужно обеспечивать денежными вентилями и теплоизоляцией, которая позволить сохранить качество разогретой жидкости. При этом трубы можно также обмотать плотной тканью или полиэтиленом.
  • В конструкции должен обязательно присутствовать вентиль, предотвращающий циркуляцию от теплоносителя. Если наблюдается резкое снижение температуры, то вентиль нужно закрыть.
  • Перед тем как соорудить солнечные установки, следует сделать детальный расчет площади батарей, а также максимальную выработку энергии.

О том, как сделать солнечный коллектор своими руками из алюминиевых банок, смотрите в следующем видео.

Солнечный коллектор — Википедия

Солнечный коллектор — устройство для сбора тепловой энергии Солнца (гелиоустановка), переносимой видимым светом и ближним инфракрасным излучением. В отличие от солнечных батарей, производящих непосредственно электричество, солнечный коллектор производит нагрев материала-теплоносителя.

Обычно применяются для нужд горячего водоснабжения и отопления помещений.[1]

Типы солнечных коллекторов

Плоские

Solar panels, Santorini.jpg Плоский солнечный коллектор

Плоский коллектор состоит из элемента, поглощающего солнечное излучение (абсорбер), прозрачного покрытия и термоизолирующего слоя. Абсорбер связан с теплопроводящей системой. Он покрывается чёрной краской либо специальным селективным покрытием (обычно чёрный никель или напыление оксида титана) для повышения эффективности. Прозрачный элемент обычно выполняется из закалённого стекла с пониженным содержанием металлов, либо особого рифлёного поликарбоната. Задняя часть панели покрыта теплоизоляционным материалом (например, полиизоцианурат). Трубки, по которым распространяется теплоноситель, изготавливаются из сшитого полиэтилена либо меди. Сама панель является воздухонепроницаемой, для чего отверстия в ней заделываются силиконовым герметиком.

При отсутствии забора тепла (застое) плоские коллекторы способны нагреть воду до 190—210 °C[источник не указан 513 дней].

Чем больше падающей энергии передаётся теплоносителю, протекающему в коллекторе, тем выше его эффективность. Повысить её можно, применяя специальные оптические покрытия, не излучающие тепло в инфракрасном спектре.

Вакуумные

Solar panels, Santorini.jpg Вакуумный солнечный коллектор

Возможно повышение температур теплоносителя вплоть до 250—300 °C в режиме ограничения отбора тепла. Добиться этого можно за счёт уменьшения тепловых потерь в результате использования многослойного стеклянного покрытия, герметизации или создания в коллекторах вакуума.

Фактически солнечная тепловая труба имеет устройство, схожее с бытовыми термосами. Только внешняя часть трубы прозрачна, а на внутренней трубке нанесено высокоселективное покрытие, улавливающее солнечную энергию. Между внешней и внутренней стеклянной трубкой находится вакуум. Именно вакуумная прослойка даёт возможность сохранить около 95 % улавливаемой тепловой энергии.

Кроме того, в вакуумных солнечных коллекторах нашли применение тепловые трубки, выполняющие роль проводника тепла. При облучении установки солнечным светом жидкость, находящаяся в нижней части трубки, нагреваясь, превращается в пар. Пары поднимаются в верхнюю часть трубки (конденсатор), где конденсируясь передают тепло коллектору. Использование данной схемы позволяет достичь большего КПД (по сравнению с плоскими коллекторами) при работе в условиях низких температур и слабой освещенности.

Современные бытовые солнечные коллекторы способны нагревать воду вплоть до температуры кипения даже при отрицательной окружающей температуре.

Устройство бытового коллектора

Теплоноситель (вода, воздух, масло или антифриз) нагревается, циркулируя через коллектор, а затем передает тепловую энергию в бак-аккумулятор, накапливающий горячую воду для потребителя.

В простом варианте циркуляция воды происходит естественно из-за разности температур в коллекторе. Такое решение позволяет повысить эффективность солнечной установки, поскольку КПД солнечного коллектора снижается с ростом температуры теплоносителя.

Бывают и солнечные водонагревательные установки аккумуляционного типа, в которых отсутствует отдельный бак-аккумулятор, а нагретая вода сохраняется непосредственно в солнечном коллекторе. В этом случае установка представляет собой близкий к прямоугольной форме бак.[1]

Преимущества и недостатки плоских и вакуумных коллекторов

Вакуумные трубчатыеПлоские высокоселективные
ПреимуществаПреимущества
Низкие теплопотериСпособность очищаться от снега и инея
Работоспособность в холодное время года до −30СВысокая производительность летом
Способность генерировать высокие температурыОтличное соотношение цена/производительность для южных широт и тёплого климата
Длительный период работы в течение сутокВозможность установки под любым углом
Удобство монтажаМеньшая начальная стоимость
Низкая парусность
Отличное соотношение цена/производительность для умеренных широт и холодного климата
НедостаткиНедостатки
Неспособность к самоочистке от снегаВысокие теплопотери
Относительно высокая начальная стоимость проектаНизкая работоспособность в холодное время года
Рабочий угол наклона не менее 20°Сложность монтажа, связанная с необходимостью доставки на крышу собранного коллектора
Высокая парусность

Солнечные коллекторы-концентраторы

Повышение эксплуатационных температур до 120—250 °C возможно путём введения в солнечные коллекторы концентраторов с помощью параболоцилиндрических отражателей, проложенных под поглощающими элементами. Для получения более высоких эксплуатационных температур требуются устройства слежения за солнцем.

Солнечные воздушные коллекторы

Солнечные воздушные коллекторы — это приборы, работающие на энергии Солнца и нагревающие воздух. Солнечные воздушные коллекторы чаще всего используются для отопления помещений, сушки сельскохозяйственной продукции. Воздух проходит через поглотитель благодаря естественной конвекции или под воздействием вентилятора.

В некоторых солнечных воздухонагревателях к поглощающей пластине присоединены вентиляторы, которые улучшают теплопередачу. Недостаток этой конструкции в том, что она расходует энергию на работу вентиляторов, таким образом увеличивая затраты на эксплуатацию системы. В холодном климате воздух направляется в промежуток между пластиной-поглотителем и утеплённой задней стенкой коллектора: таким образом избегают потерь тепла сквозь остекление. Однако, если воздух нагревается не более, чем на 17 °С выше температуры наружного воздуха, теплоноситель может циркулировать по обе стороны от пластины-поглотителя без больших потерь эффективности.

Основными достоинствами воздушных коллекторов являются их простота и надёжность. При надлежащем уходе качественный коллектор может прослужить 10-20 лет, а управление им весьма несложно. Теплообменник не требуется, так как воздух не замерзает.

Применение

Солнечный водонагреватель на жилом доме. Мальта.

Солнечные коллекторы применяются для отапливания промышленных и бытовых помещений, для горячего водоснабжения производственных процессов и бытовых нужд. Наибольшее количество производственных процессов, в которых используется тёплая и горячая вода (30—90 °C), проходят в пищевой и текстильной промышленности, которые таким образом имеют самый высокий потенциал для использования солнечных коллекторов.

В Европе в 2000 году общая площадь солнечных коллекторов составляла 14,89 млн м², а во всём мире — 71,341 млн м².

Солнечные коллекторы — концентраторы могут производить электроэнергию с помощью фотоэлектрических элементов или двигателя Стирлинга.

Солнечные коллекторы могут использоваться в установках для опреснения морской воды. По оценкам Германского аэрокосмического центра (DLR) к 2030 году себестоимость опреснённой воды снизится до 40 евроцентов за кубический метр воды[2]

В России

По исследованиям ОИВТ РАН в тёплый период (с марта—апреля по сентябрь) на большей части территории России средняя дневная сумма солнечного излучения составляет 4,0-5,0 кВтч/м² (на юге Испании — 5,5-6,0 кВтч/м², на юге Германии — до 5 кВтч/м²). Это позволяет нагревать для бытовых целей около 100 л воды с помощью солнечного коллектора площадью 2 м² с вероятностью до 80 %, то есть практически ежедневно. По среднегодовому поступлению солнечной радиации лидерами являются Забайкалье, Приморье и Юг Сибири. За ними идут юг европейской части (приблизительно до 50º с.ш.) и значительная часть Сибири.

Использование солнечных коллекторов в России составляет 0,2 м²/1000 чел.. В Германии эксплуатируется 140 м²/1000 чел., в Австрии 450 м²/1000 чел., на Кипре около 800 м²/1000 чел..

В летнем периоде, большинство районов России вплоть до 65º с.ш. характеризуются высокими значениями среднедневной радиации. В зимнее время количество поступающей солнечной энергии снижается в зависимости от широтного расположения установки в разы.

Для всесезонного применения установки должны иметь большую поверхность, два контура с антифризом, дополнительные теплообменники. В таком случае применяется вакуумированные коллекторы или плоские коллекторы с высокоселективным покрытием, поскольку больше разность температур между нагреваемым теплоносителем и наружным воздухом. Однако такая конструкция выше по стоимости.[1]

Сооружение коллекторов в настоящее время осуществляется, в основном, в Краснодарском крае, Бурятии, в Приморском и Хабаровском краях.[3]

Солнечные башни

Solar panels, Santorini.jpg Солнечная башня, Севилья, Испания. Построена в 2007 г.

Впервые идея создания солнечной электростанции промышленного типа была выдвинута советским инженером Н. В. Линицким в 1930-х гг. Тогда же им была предложена схема солнечной станции с центральным приёмником на башне. В ней система улавливания солнечных лучей состояла из поля гелиостатов — плоских отражателей, управляемых по двум координатам. Каждый гелиостат отражает лучи солнца на поверхность центрального приёмника, который для устранения влияния взаимного затенения поднят над полем гелиостатов. По своим размерам и параметрам приёмник аналогичен паровому котлу обычного типа.

Экономические оценки показали целесообразность использования на таких станциях крупных турбогенераторов мощностью 100 МВт. Для них типичными параметрами являются температура 500 °C и давление 15 МПа. С учётом потерь для обеспечения таких параметров требовалась концентрация порядка 1000. Такая концентрация достигалась с помощью управления гелиостатами по двум координатам. Станции должны были иметь тепловые аккумуляторы для обеспечения работы тепловой машины при отсутствии солнечного излучения.

В США с 1982 г. было построено несколько станций башенного типа мощностью от 10 до 100 МВт. Подробный экономический анализ систем этого типа показал, что с учётом всех затрат на сооружение 1 кВт установленной мощности стоит примерно $1150. Один кВт·ч электроэнергии стоил около $0,15.

Параболоцилиндрические концентраторы

Solar panels, Santorini.jpg Параболоцилиндрические концентраторы.

Параболоцилиндрические концентраторы имеют форму параболы, протянутую вдоль прямой.

В 1913 году Франк Шуман построил в Египте водоперекачивающую станцию из параболоцилиндрических концентраторов. Станция состояла из пяти концентраторов каждый 62 метра в длину. Отражающие поверхности были изготовлены из обычных зеркал. Станция вырабатывала водяной пар, с помощью которого перекачивала около 22 500 литров воды в минуту[4].

Параболоцилиндрический зеркальный концентратор фокусирует солнечное излучение в линию и может обеспечить его стократную концентрацию. В фокусе параболы размещается трубка с теплоносителем (масло), или фотоэлектрический элемент. Масло нагревается в трубке до температуры 300—390 °C. В августе 2010 года специалисты NREL испытали установку компании SkyFuel. Во время испытаний была продемонстрирована термальная эффективность параболоцилиндрических концентраторов 73 % при температуре нагрева теплоносителя 350 °C[5].

Параболоцилиндрические зеркала изготовляют длиной до 50 метров. Зеркала ориентируют по оси север—юг, и располагают рядами через несколько метров. Теплоноситель поступает в тепловой аккумулятор для дальнейшей выработки электроэнергии паротурбинным генератором.

С 1984 года по 1991 год в Калифорнии было построено девять электростанций из параболоцилиндрических концентраторов общей мощностью 354 МВт. Стоимость электроэнергии составляла около $0,12 за кВт·ч.

Германская компания Solar Millennium AG строит во Внутренней Монголии (Китай) солнечную электростанцию. Общая мощность электростанции увеличится до 1000 МВт к 2020 году. Мощность первой очереди составит 50 МВт.

В июне 2006 года в Испании была построена первая термальная солнечная электростанция мощностью 50 МВт. В Испании к 2010 году может быть построено 500 МВт электростанций с параболоцилиндрическими концентраторами.

Всемирный банк финансирует строительство подобных электростанций в Мексике, Марокко, Алжире, Египте и Иране.

Концентрация солнечного излучения позволяет сократить размеры фотоэлектрического элемента. Но при этом снижается его КПД, и требуется некая система охлаждения.

Параболические концентраторы

Solar panels, Santorini.jpg Экспериментальный коллектор НПО «Астрофизика»

Параболические концентраторы имеют форму параболоида вращения. Параболический отражатель управляется по двум координатам при слежении за солнцем. Энергия солнца фокусируется на небольшой площади. Зеркала отражают около 92 % падающего на них солнечного излучения. В фокусе отражателя на кронштейне закреплён двигатель Стирлинга, или фотоэлектрические элементы. Двигатель Стирлинга располагается таким образом, чтобы область нагрева находилась в фокусе отражателя. В качестве рабочего тела двигателя Стирлинга используется, как правило, водород, или гелий.

В феврале 2008 года Национальная лаборатория Sandia достигла эффективности 31,25 % в установке, состоящей из параболического концентратора и двигателя Стирлинга[6].

В настоящее время строятся установки с параболическими концентраторами мощностью 9—25 кВт. Разрабатываются бытовые установки мощностью 3 кВт. КПД подобных систем около 22—24 %, что выше, чем у фотоэлектрических элементов. Коллекторы производятся из обычных материалов: сталь, медь, алюминий, и т. д. без использования кремния «солнечной чистоты». В металлургии используется так называемый «металлургический кремний» чистотой 98 %. Для производства фотоэлектрических элементов используется кремний «солнечной чистоты», или «солнечной градации» с чистотой 99,9999 %[7].

В 2001 году стоимость электроэнергии, полученной в солнечных коллекторах составляла $0,09—0,12 за кВт·ч. Департамент энергетики США прогнозирует, что стоимость электроэнергии, производимой солнечными концентраторами снизится до $0,04—0,05 к 2015 — 2020 году.

Компания Stirling Solar Energy разрабатывает солнечные коллекторы крупных размеров — до 150 кВт с двигателями Стирлинга. Компания строит в южной Калифорнии крупнейшую в мире солнечную электростанцию. До 2010 года будет 20 тысяч параболических коллекторов диаметром 11 метров. Суммарная мощность электростанции может быть увеличена до 850 МВт.

Линзы Френеля

Линзы Френеля используются для концентрации солнечного излучения на поверхности фотоэлектрического элемента или на трубке с теплоносителем. Применяются как кольцевые, так и поясные линзы. В английском языке употребляется термин LFR — linear Fresnel reflector.

Распространение

В 2010 году во всём мире работало 1170 МВт солнечных термальных электростанций. Из них в Испании 582 МВт и в США 507 МВт. Планируется строительство 17,54 ГВт солнечных термальных электростанций. Из них в США 8670 МВт, в Испании 4460 МВт, в Китае 2500 МВт[8]. В 2011 году насчитывалось 23 производителя и поставщика плоских коллекторов из 12 стран; 88 производителей и поставщиков вакуумных коллекторов из 21 страны.[9]

См. также

Примечания

Литература

  • А. И. Капралов Рекомендации по применению жидкостных солнечных коллекторов. ВИНИТИ, 1988
  • Гелиотехника. Академия Наук Узбекской АССР, 1966
  • Солнечный душ // Наука и жизнь, издательство Правда. 1986 № 1, стр 131
  • Г. В. Казаков Принципы совершенствования гелиоархитектуры. Свит, 1990

Ссылки

Солнечные коллекторы. Применение солнечной энергии.

 Солнце — источник жизни на планете. Люди с давних пор используют энергию солнца. В теплое время года солнце согревает наши дома, а зимой мы используем источники тепла — древесину, газ, уголь — как аккумулированное тепло солнечной энергии. Современная наука ставит задачу : разработать  механизмы и приспособления, которые менее энергозатратны и имеют высокий КПД для производства тепловой энергии. Наиболее перспективными являются такие технологические разработки, которые позволяют при минимальных затратах возобновлять имющиеся энергоресурсы.  Использование энергии солнца коллекторами, которая неисчерпаема и доступна в любой точке планеты, экологически безопасно и экономически оправдано.   Ведь запасы природного топлива (газа, угля, древесины) ограничены, и, следовательно, дорожают с каждым годом.

Сегодня использование солнечных коллекторов для воспроизводства тепловой энергии не проекты будущего, а действующие и реализуемые программы во многих странах мира. Cолнечные коллекторы в инженерных конструкциях зданий  очень широко используются  в Америке, Австралии, Европе .

Тем не менее, распространено убеждение, что в России и на Украине не целесообразно использовать солнечные коллекторы. Распространено убеждение, что лучший способ использовать солнечную энергию в теплое время года — выкрасить бак с водой в темный цвет, который позволит быстрее нагреть воду, и использовать ее по назначению. Использовать лишь этот способ аккумуляции солнечной энергии — не эффективно и КПД этой системы очень низка! Ведь использовать солнечную энергию можно и зимой.

Хотите, чтобы солнце не только дарило вам свет и тепло, но и экономило ваш бюджет? Соременные научные технологии позволяют это!

Слнечные системы для обогрева воды успешно могут быть применены для обогрева жилых домов, коттеджей, гостиничных комплексов, предприятий, промышленных объектов.

Использование солнечных коллекторов позволит решить вопросы:

— обеспечение горячего водоснабжения в автономном режиме

— отопление жилых и производственных помещений

— обогрев воды в бассейнах

— обеспечит  технической водой нужного теплового режима

Солнечные коллекторы аккумулируют природную энергию солнца с максимальной эффективностью. Принцип работы солнечного коллектора основан на так называемом «парниковом эффекте». Солнечные лучи проходят в замкнутое пространство, превращаются в тепловую энергию, где она накапливается и сохраняется длительное время. При этом солнечные коллекторы спроектированы так, что обратно аккумулированная тепловая энергия не может пройти сквозь прозрачную установку. В основе гидравлической системы, предусматривающей использование солнечных коллекторов, используется термосифонный эффект. Принцип действия прост —  жидкость при нагревании вытесняет более холодную воду, тем самым заставляет ее двигаться к месту обогрева.

Существуют разные формы солнечных коллекторов по форме, устройству поглощающих поверхностей,  по способу аккумуляции солнечной энергии. Объединяет их — экологическая безопасность и экономия бюджетных средств.

Виды солнечных коллекторов:

плоский солнечный коллектор

Это наиболее распространенный вид солнечных коллекторов. Он используется в бытовых системах водообогревания и отоплении помещений. Он представляет собой остекленную панель с вмонтированной пластиной энергопоглотителя. Металлическая пластина предназначена для поглощения и удержания солнечной энергии. Чаще всего используют медь или алюминий как металлы-проводники тепловой энергии. Однако, специалисты считают, что для этих целей лучше подходит медь. Медь — более лучший теплопроводник, меньше алюминия подвержена коррозии. Для усиления эффекта поглощения солнечной энергии, пластину обрабатывают специальным покрытием. Тонкий слой аморфного покрытия усиливает поглощающую способность пластины и отличается низким КИ (коэффициентом излучения) в длинноволной инфракрасной области. Матовое остекление коллектора, которое только пропускает свет, позволяет снизить потери тепла. При изготовлении стенок и дна коллектора используют теплоизолирующие материалы, которые также помогают избежать потери тепла.

вакуумный солнечный коллектор с прямой теплопередачей

Трубки вакуумного коллектора, расположенные под углом, соединены с баком, из которого вода контура теплообменника течет в трубки коллектора, нагреваясь, возвращается обратно. При этом  емкость с водой надо расположить выше коллектора или использовать редукторы, которые позволят снизить давление. Вода нагревается в трубках коллектора и поднимается вверх, а холодная вода течет вниз. Происходит беспрерывная циркуляция воды в системе. Термосифонный эффект основан на естественной конвекции жидкости в коллекторе.   Система должна быть безнапорной, чтобы избежать давление на трубки. Если трубка коллектора разобьется, произойдет утечка воды. Этот вид коллектора имеет достаточно большой объем воды контура теплообменника (от 60 до 200 л). Это может быть недостатком системы. Однако, низкая стоимость вакуумного коллектора может быть его преимуществом.

Вакуумный солнечный коллектор

В вакуумный солнечный коллектор с прямой теплопередачей воде  может быть встроен теплообменник. Он встраивается в бак теплообменника, что позволяет соединить систему к системе водоснабжения. При этом сохраняется безнапорный режим в системе. Если заполнить водонагревательный конткр незамерзающей жидкостью, то коллектор можно использовать при минусовых температурах — 5 — 10 градусов. В коллекторах этого вида не скапливаются загрязнения и не откладываются соли отложения, потому что вода проходит по внутреннему теплообменнику, а объем теплоносителя не изменяется.

вакуумный солнечный коллектор с термотрубками

В основе конструкции этого коллектора — закрытые медные трубки с небольшим содержанием жидкости низкой температуры кипения.

При нагревании жидкость испаряется и забирает тепло трубки. Пары, поднимаясь вверх,  конденсируются и передают тепло теплоносителю основного контура или  жидкости отопительного контура. Конденсат стекает вниз, процесс повторяется. Медный приемник с полиуретановой изоляцией покрыт нержавеющим листом. Тепло передается через приемник и поэтому отопительный контур разделен от трубок.   В этом преимущество данного вида коллекторов.  Не смотря на возможное повреждение одной из трубок коллектора, он продолжает работать. Заменить поврежденную трубку просто, при этом не требуется сливать жидкость из контура теплообменника.

Этот вид коллекторов более дорогой, но если учесть его преимущества, то они неоспоримы. Коллектор может работать при температуре — 35 градусов, если коллектор имеет стеклянные тепловые трубки, и при температуре — 50 градусов, если  в основе конструкции металлические тепловые трубки!

Так как солнечный коллектор размещается снаружи помещения, а его составляющее оборудование внутри, то потери тепла миминизированы. 

Солнечные коллекторы позволяют полностью обеспечить потребность в горячей воде в летнее время, а в зимний период обеспечит 60% в потребности горячей воды и 30% в потребности электроэнергии.

Потоки солнечной энергии в любое время года составляет 100 — 250 вт/кв.м, в полдень достигает 1000вт/кв. м.  при солнечной погоде в любой местности. Современные технологии разрабатывают  установки, которые позволяют аккумулировать солнечную энергию и преобразовать ее в нужный вид энергии (электороэнергию, тепловую) при наименьших затратах. Использование плоских солнечных коллекторов является наиболее простым и дешевым способом решения этой задачи. Более сложный способ использования солнечной энергии — при применении вакуумных солнечных коллекторов. Да, при солнечной погоде и в теплое время года оба вида солнечных коллекторов обеспечивают энергией в полной мере. Но при низких температурах применение вакуумного коллектора более предпочтительно. Причем, для плоских коллекторов максимальной температурой является 80-90 градусов, в вакуумных температура может превышать 100 градусов. В то же время в теплой и влажной среде плоских коллекторов есть опасность размножения бактерий и микроорганизмов, что исключается при применении вакуумных коллекторов.

Принцип работы водонагревательной установки с применением солнечного коллектора. Солнечная водонагревательная установка состоит из коллектора и теплообменника. через коллектор проходит теплоноситель. Теплоноситель, нагреваясь в коллекторе, отдает энергию воде через теплообменник (он вмонтирован в бак). Бак сохраняет горячую воду, поэтому важна его хорошая теплоизоляция. Как видно из схемы, в контуре, где работает солнечный коллектор, может использоваться естественная или принудительная циркуляция теплоносителя. В случае продолжительной пасмурной погоды в бакк-аккумулятор может быть вставлен нагреватель-дублер. При понижении температуры в аккумуляторном баке он включается автоматически и поддерживает необходимую температуру воды.

Итак, в солнечных коллекторах могут быть использованы

* одноконтурные схемы для подогрева воды (сезонные или в местностях, где температура не опускается ниже 0 в течении года. В этих системах вода используется мягкая и чистая).

* двухконтурные схемы подогрева воды (использование независимо от погодных условий и качества воды)

По каждой схеме  водонагревания циркуляция может быть естественной и принудительной, так и система теплоснабжения может быть пассивной и активной.

Если накопительный бак расположен выше солнечного коллектора, то  идет естественная циркуляция теплоносителя.  Если такое расположение бака невозможно, то применяется система с активной циркуляцией теплоносителя.

Безусловно, одноконтурная система более дешева, двухконтурная система с активной циркуляцией несколько дороже.

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *