8-3842-33-85-00 - магазин жидких обоев

г. Кемерово, Рынок "Привоз" бокс №1

Принцип работы и устройство холодильной установки – Холодильные машины и установки. Устройство, виды, принцип действия холодильных машин.

устройство и принцип работы :: SYL.ru

Охлаждение подразделяется на естественное и искусственное. На первое энергия не тратится. Причем температура объекта стремится к температуре окружающего воздуха. Искусственное охлаждение представляет собой снижение температуры объекта до уровня ниже такого же показателя среды. Для такого охлаждения нужны холодильные машины или устройства. Обычно они применяются в промышленности для достижения нужных условий хранения, течения химических реакций, безопасности. Тепловые и холодильные машины очень широко применяются и в быту. Их принцип работы базируется на явлениях сублимации и конденсации.

Охлаждение льдом

холодильные машиныЭто самый доступный и простой вид охлаждения. Особенно удобен он в районах, где есть возможность накопления естественного льда.

В качестве средства охлаждения лед используется в процессе заготовки и хранения рыбы, при краткосрочном хранении овощной продукции, транспортировке пищевых продуктов в охлажденном виде. Лед применяется в погребах и ледниках. В таком оборудовании очень важна теплоизоляция. В стационарных ледниках стены гидро- и теплоизолированы. Они рассчитаны на температурный диапазон +5…+8°С.

принцип принцип холодильной машины

Льдосоляное охлаждение

Льдосоляной метод охлаждения позволяет достичь поддержки еще более низких температурных условий в объеме, подвергаемом охлаждению. Совместное использование льда и соли дает возможность снизить температуру, при которой лед тает. Таков принцип. Принцип холодильной машины.

Для этой цели смешивается лед и хлористый натрий. В зависимости от концентрации соли температура льда колеблется от -1,8 до -21,2°С.

До минимума температура плавления доходит, если соли в смеси 23%. В этом случае лед не тает при минимальном показателе.

Сухой лед служит для поддержания низких температур в процессе хранения фруктов, мороженого, овощей, полуфабрикатов. Так называют твердое состояние углекислоты. При атмосферном давлении и нагреве она из твердой становится газообразной, пропуская фазу жидкости. Производительность холода у сухого льда вдвое больше, чем у водяного. Когда происходит сублимация сухого льда, получается углекислый газ, который, помимо всего прочего, выполняет консервирующие функции, способствуя сохраннности продуктов.

Методы охлаждения с использованием льда имеют и ряд недостатков, ограничивающих их применение. В связи с этим главным методом генерации холода становится машинное охлаждение.

Искусственное охлаждение

принцип работы холодильной машиныМашинное охлаждение представляет собой производство холода, которое производят холодильные машины и установки. У этого способа есть несколько достоинств:
  • в автоматическом режиме сохраняется неизменный уровень температуры, различный для разных групп продуктов;
  • оптимально задействовано охлаждаемое пространство;
  • удобно эксплуатировать охлаждаемые помещения;
  • небольшие затраты на техобслуживание.

Как работает

работа холодильной машиныПринцип работы холодильной машины таков. Безусловно, человеку, который только лишь пользуется холодильной машиной или разыскивает ее, совсем не обязательно глубоко и всесторонне разбираться в работе холодильных машин. При этом знание основополагающих принципов работы таких установок будет совсем не лишним. Эта информация способна оказать помощь в осознанном выборе оборудования и облегчит беседу с профессионалами при выборе холодильного оборудования.

Также важно разбираться, как происходит работа холодильной машины. В ситуациях, когда холодильное оборудование отказывает и требуется вызов специалиста, имеет смысл вникнуть в принцип действия подобных машин. Ведь понимание объяснений специалиста о том, что нужна замена или ремонт какой-либо детали холодильной машины, позволит не потерять лишних денег.

Главный принцип работы холодильной машины – отвод тепла от объекта, подвергаемого охлаждению, и его перенос к другому объекту. Важно понимание того, что нагревание или сжатие объекта сопровождается передачей ему энергии, а охлаждение и расширение отбирает энергию. На этом основана передача тепла.

Для переноса тепла холодильные машины используют хладагенты – специальные вещества, отнимающие теплоту у объекта охлаждения в ходе кипения и расширения при постоянной температуре. В дальнейшем после сжатия энергия передается охлаждающей среде посредством конденсации.

Назначение отдельных узлов

Компрессором холодильной машины обеспечивается кругооборот хладагента в системе, его кипение в испарителе с нагнетанием в блок конденсатора.

Он призван отсасывать хладагент фреон в газообразном состоянии из испарителей, и, сжимая, нагнетать в конденсатор, где он превращается в жидкость. Затем фреон в жидком состоянии накапливается в ресивере. Этот узел оборудован входными и выходными запорными вентилями. Дальнейший путь хладагента — из ресивера в фильтр-осушитель. Здесь остатки влаги и примеси удаляются и поступают в испаритель.

В испарителе хладагент достигает кипения, что отбирает теплоту у охлаждаемого объекта. Далее хладагент уже в газообразном состоянии попадает из испарителя в компрессор, очищаясь через фильтр от загрязнений. Далее рабочий цикл агрегата повторяется, это и есть принцип. Принцип холодильной машины.

Холодильный агрегат

холодильные машины и установкиОбъединение совокупности деталей и узлов холодильной машины на едином каркасе принято называть холодильным агрегатом. Совмещение узлов холодильной машины производителем делает удобнее монтаж, и происходит он быстрее.

Холодопроизводительность таких агрегатов – параметр, представляющий собой количество тепла, отнимаемое у среды, подвергаемой охлаждению за один час. При различных режимах работы производительность холода варьируется в широком диапазоне. Когда растет температура конденсации и понижается градус испарения, производительность уменьшается.

Хладагенты

тепловые и холодильные машиныХолодильные машины, используемые в торговых организациях, в роли хладагентов используют хладон или фреон, а для заморозки в промышленных масштабах — аммиак.

Хладон представляет собой тяжелый газ без цвета и со слабым запахом, ощутимым, лишь когда его концентрация в воздухе достигает 20%. Газ не горюч и не взрывчат. В хладоне хорошо растворимы смазочные масла. При больших температурах они составляют с ним однородную смесь. Хладон не влияет на вкусовые качества, аромат и цвет продуктов.

В холодильных установках с хладоном не должно быть более 0,006% массы влаги. Иначе она замерзает в тонких трубках, препятствуя работе холодильной машины. Из-за высокой текучести газа нужна хорошая герметизация агрегатов.

Аммиак — бесцветный резко пахнущий газ, опасный для человеческого организма. Его допустимое содержание в воздухе — 0,02 мг/л. Когда концентрация доходит до 16%, возможен взрыв. При содержании газа свыше 11% и открытом пламени рядом начинается горение.

устройство холодильной установки

Устройство наибольшего количества холодильных машин базируется на компрессионном цикле охлаждения, основными конструктивными элементами которого являются — компрессор, испаритель, конденсатор и регулятор потока (терморегулирующий вентиль или капиллярная трубка), соединенные трубопроводами и представляющие собой замкнутую систему, в которой циркуляцию хладагента (фреона) осуществляет компрессор. Кроме обеспечения циркуляции, компрессор поддерживает в конденсаторе (на линии нагнетания) и высокое давление, порядка 20-23 атм.

Охлаждение в холодильной машине обеспечивается непрерывной циркуляцией, кипением и конденсацией хладагента в замкнутой системе. Кипение хладагента происходит при низком давлении и низкой температуре. Парообразный хладагент всасывается компрессором, и подаётся в конденсатор, давление хладагента повышается до 15-20 атм., а его температура повышается до 70-90˚С.

Проходя через конденсатор, горячий парообразный хладагент охлаждается и конденсируется, т.е. переходит в жидкую фазу. Конденсатор может быть либо воздушным, либо с водяным охлаждением — в зависимости от типа холодильной системы.

На выходе из конденсатора хладагент находится в жидком состоянии при высоком давлении. Размеры конденсатора выбираются таким образом, чтобы газ полностью сконденсировался внутри конденсатора. Поэтому температура жидкости на выходе из конденсатора оказывается несколько ниже температуры конденсации. Переохлаждение в конденсаторах с воздушным охлаждением обычно составляет примерно 4-7˚С. При этом температура конденсации примерно на 10-20˚С выше температуры атмосферного воздуха.

Затем хладагент в жидкой фазе при высокой температуре и давлении поступает в регулятор потока, где давление смеси резко уменьшается — часть жидкости при этом может испариться, переходя в парообразную фазу. Таким образом, в испаритель попадает смесь пара и жидкости. Жидкость кипит в испарителе, забирая тепло у окружающего воздуха, и вновь переходит в парообразное состояние.

Размеры испарителя выбираются таким образом, чтобы жидкость в нем полностью улетучилась. Поэтому температура пара на выходе из испарителя оказывается выше температуры кипения — происходит так называемый перегрев хладагента в испарителе. В этом случае даже самые маленькие капельки хладагента, и в компрессор не попадает жидкость.

Следует отметить, что в случае попадания жидкого хладагента в компрессор — так называемого гидравлического удара — возможны повреждения и поломки клапанов и других деталей компрессора. Для конденсаторов с воздушным охлаждением величина перегрева составляет 5-8˚С. Перегретый пар выходит из испарителя, и цикл возобновляется.

Таким образом, хладагент постоянно циркулирует по замкнутому контуру, меняя свое агрегатное состояние с жидкого на парообразное и наоборот. Несмотря на то, что существует много типов компрессионных холодильных машин, принципиальная схема цикла в них практически одинакова.

Опишем устройство отдельных агрегатов, узлов и деталей холодильного оборудования:

АГРЕГАТ

Холодильный агрегат состоит из следующих основных деталей и узлов: компрессора, ресивера, конденсатора, испарителя, терморегулирующего вентиля (ТРВ), осушительного патрона.

Компрессор

Холодильные агрегаты выпускаются на базе герметичных, экранированных, полугерметичных и сальниковых компрессоров. По своему конструктивному исполнению компрессоры, используемые в холодильных агрегатах, делятся на две основные категории: поршневые и ротационные, спиральные, винтовые.

Принципиальное отличие ротационных, спиральных и винтовых компрессоров от поршневых заключается в том, что всасывание и сжатие хладагента осуществляется не за счет возвратно-поступательного движения поршней в цилиндрах, а за счет вращательного движения пластин, спиралей и винтов.

В герметичных компрессорах электродвигатель и компрессор расположены в едином герметичном корпусе. Такие компрессоры широко используются в холодильных машинах малой и средней мощностей и в бытовых кондиционерах. Преимуществом герметичных агрегатов является их относительно невысокая стоимость и меньший уровень шума. Недостатком является невозможность ремонта компрессора даже при незначительных повреждениях, например, при выходе из строя клапана.

В экранированных компрессорах статор электродвигателя вынесен из фреономасляной среды. Агрегаты данного типа менее чувствительны к наличию влаги в холодильном контуре и, что немаловажно, позволяют все работы по монтажу и замене статора электродвигателя компрессора при его сгорании производить на месте эксплуатации, не нарушая герметичности всей системы.

В полугерметичных компрессорах электродвигатель и компрессор расположены в едином разборном корпусе. Эти компрессоры производятся различной мощности, что позволяет использовать их в агрегатах средней и большой мощности. Преимуществом является возможность ремонта и надежность в работе, недостатком — высокая по сравнению с герметичными компрессорами цена, повышенная шумность и необходимость технического обслуживания.

В сальниковых компрессорах электродвигатель расположен снаружи. Вал компрессора через сальники выведен за пределы корпуса и приводятся в движение электродвигателем с помощью ременной передачи. Такая конструкция способствует повышенной утечке хладагента через сальниковые уплотнения и требует регулярного технического обслуживания.

В настоящее время агрегаты на базе сальниковых компрессоров для торгового оборудования практически не выпускаются. Преимуществ в конструкциях с сальниковыми компрессорами на данный момент нет, ремонт подобных холодильных машин отличается невысокой надёжностью.

Конденсатор

Конденсатор представляет собой теплообменный аппарат, который передает тепловую энергию хладагента окружающей среде. В холодильных агрегатах для торгового оборудования чаще всего применяют конденсаторы воздушного охлаждения. По сравнению с конденсаторами водяного охлаждения, они экономичнее в работе и проще в эксплуатации.

Конденсатор может быть смонтирован на раме агрегата или быть установленным отдельно от него. Преимущество выносного конденсатора заключается в том, что он менее требователен к температуре воздуха в машинном отделении и практически не требует дополнительной вентиляции в машинном отделении.

Как правило, воздушный конденсатор для холодильных или морозильных камер устанавливается на открытом воздухе. Но, несмотря на преимущество выносного конденсатора, при работе холодильной установки в зимний период есть определенные проблемы:

возможность повреждения компрессора при пуске;

опасность попадания жидкого хладагента в компрессор;

обмерзание теплообменника при длительной работе;

уменьшение холодопроизводительности.

Для устранения этих причин используется дополнительный комплект автоматики: реле давления или регулятор скорости вращения электродвигателя, дифференциальный клапан, обратный клапан и регулятор давления конденсации.

Ресивер

Ресивер — резервуар, служащий для сбора жидкого хладагента с целью обеспечения его равномерного поступления к терморегулирующему вентилю и в испаритель. В малых хладоновых машинах ресивер предназначен для сбора хладагента во время ремонта машины, а также для охлаждения газа и отделения капель масла и влаги.

Испаритель

Испаритель — это аппарат, в котором жидкий хладагент кипит при низком давлении, отводя тепло от охлаждаемых объектов (продуктов). Чем ниже давление, поддерживаемое в испарителе, тем ниже температура кипящего хладагента. Температуру кипения, как правило, поддерживают на 10—15°С ниже температуры воздуха в камере. Температура воздуха в камере зависит от вида охлаждаемого продукта. Испаритель может быть расположен непосредственно в охлаждаемом объеме (камере, шкафе) или находиться за его пределами.

В соответствии с этим по назначению различают испарители для непосредственного охлаждения среды и испарители для охлаждения промежуточного хладоносителя (вода, рассол, воздух, и др.). Конструкция испарителя зависит от вида охлаждающей среды, необходимой холодопроизводительности, свойств самого хладагента. Как правило, это пластинчатые теплообменники с медными или алюминиевыми трубками и ребрами из алюминия, меди или оцинкованной стали.

Терморегулирующий вентиль

Терморегулирующий вентиль (ТРВ) устанавливается в магистраль нагнетания перед испарителем и обеспечивает заполнение испарителя жидким хладагентом в оптимальных пределах. Избыток хладагента в испарителе может привести попаданию в компрессор жидкой фазы хладагента, что приведёт к поломке компрессора. Недостаток хладагента в испарителе резко снижает эффективность работы испарителя.

Осушительный патрон

Осушительные патроны предназначены для очистки циркулирующего по системе холодильного агрегата хладагента от механических частиц и влаги. Часто осушительные патроны используют для понижения кислотности среды внутри системы холодильного агрегата. Осушительные патроны могут устанавливаться как на магистрали нагнетания, так и на стороне всасывания.

ВОЗДУХООХЛАДИТЕЛЬ

Воздухоохладитель — аппарат для охлаждения воздуха внутри охлаждаемого объёма. Состоит из испарителя и вентилятора (вентиляторов). Вентилятор прогоняет охлаждаемый воздух через испаритель и направляет на охлаждаемые продукты.

МОНОБЛОК

Машина холодильная моноблочная (моноблок) предназначена для создания искусственного холода в торговом холодильном оборудовании. Особенностью моноблока является то, что он не требует монтажа отдельных узлов на месте эксплуатации, а просто монтируется на холодильной камере. В отличие от сплит-систем, моноблок обладает меньшей стоимостью при одинаковых параметрах.

ТЕРМОСТАТ

Это устройство для отключения и включения компрессора, с целью поддержания определённой температуры в охлаждаемом объёме. Электронные термостаты основаны на принципе термопары, где электронное устройство — в зависимости от сопротивления температурного датчика — управляет временем работы компрессора.

Электромеханические термостаты работают на принципе расширения сильфонной гармошки, заполненной хладагентом. При охлаждении давление внутри сильфона понижается, сильфонная гармошка сжимается и контакты, через которые питается компрессор, размыкаются. При нагревании всё происходит в обратной последовательности.

Принципиальная схема работы термостата

ХЛАДАГЕНТЫ

Хладагенты — это рабочие вещества паровых холодильных машин, с помощью которых обеспечивается получение низких температур.

Хладон-12 (R-12) имеет химическую формулу CHF2C12 (дифтордихлорметан). Он представляет собой газообразное бесцветное вещество со слабым специфическим запахом, который начинает ощущаться при объемном содержании его паров в воздухе свыше 20%. Хладон-12 обладает хорошими термодинамическими свойствами

Хладон-22 (R-22), или дифтормонохлорметан (CHF2C1), так же как и хладон-12, обладает хорошими термодинамическими и эксплуатационными свойствами. Отличается он более низкой температурой кипения и более высокой теплотой парообразования. Объемная холодопроизводительность Хладона-22 примерно в 1,6 раза больше, чем Хладона-12.

Холодильная установка — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 4 ноября 2013; проверки требуют 22 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 4 ноября 2013; проверки требуют 22 правки.

Холодильные машины и установки предназначены для искусственного снижения и поддержания пониженной температуры ниже температуры окружающей среды от +10 °С и до −153 °С в заданном охлаждаемом объекте. Машины и установки для создания более низких температур называются криогенными. Отвод и перенос тепла осуществляется за счёт потребляемой при этом энергии. Холодильная установка выполняется по проекту в зависимости от проектного задания, определяющего охлаждаемый объект, необходимого интервала температур охлаждения, источников энергии и видов охлаждающей среды (жидкая или газообразная).

Холодильная установка может состоять из одной или нескольких холодильных машин, укомплектованных вспомогательным оборудованием: системой энерго- и водоснабжения, контрольно-измерительными приборами, приборами регулирования и управления, а также системой теплообмена с охлаждаемым объектом. Холодильная установка может быть установлена в помещении, на открытом воздухе, на транспорте и в различных устройствах, в которых необходимо поддерживать заданную пониженную температуру и удалять излишнюю влажность воздуха.

Система теплообмена с охлаждаемым объектом может быть с непосредственным охлаждением холодильным агентом, по замкнутой системе, по разомкнутой, как при охлаждении сухим льдом, или воздухом в воздушной холодильной машине. Замкнутая система может также быть с промежуточным хладоносителем, который переносит холод от холодильной установки к охлаждаемому объекту.

Началом развития холодильного машиностроения в широких размерах можно считать создание Карлом Линде в 1874 году первой аммиачной парокомпрессорной холодильной машины. С тех пор появилось много разновидностей холодильных машин, которые можно сгруппировать по принципу работы следующим образом: парокомпрессионные, упрощённо называемые компрессорные, обычно с электроприводом; теплоиспользующие холодильные машины: абсорбционные холодильные машины и пароэжекторные; воздушно-расширительные, которые при температуре ниже −90 °С экономичнее компрессорных, и термоэлектрические, которые встраиваются в приборы.

Каждая разновидность машин имеет свои особенности, по которым выбирается их область применения. В настоящее время холодильные машины и установки применяются во многих областях народного хозяйства и в быту. Ряд подробностей о холодильных машинах и установках можно найти в статье домашний холодильник.


Поток хладагента регулируется с помощью ТРВ, а работу ТРВ контролирует термобаллон, который закреплен в входящую трубу испарителя.

  • Курылев Е. С., Герасимов Н. А., Холодильные установки, Москва-Ленинград, 1970, 608 с.
  • Кошкин Н. Н., Сакун И. А., Бамбушек Е. М., Холодильные машины, «Машиностроение», 1985, 510 с.
  • Холодильные установки, Под ред. Чумака И. Г., Агропромиздат, Москва, 1991.
  • Холодильные установки // БСЭ. 3-е изд., М., Эксмо, 2008, 672 с.
  • Вайнштейн В. Д., Канторович В. И., Низкотемпературные холодильные установки, «Пищевая промышленность», М., 1972, 352 с.

2. Принцип работы холодильной установки. Холодильные агенты и хладоносители.

Элементы холодильной установки: компрессоры, конденсаторы, испарители,

вспомогательные устройства.

Рефрижераторные установки на судах служат прежде всего для того, чтобы в течение длительного времени сохранять продукты, особенно легкопортящиеся.. В охлаждающем контуре компрессора тепло забирается от хладагента, который испаряется при низких температуре (обычно ниже 0° С) и давлении. Температура хладагента за счет сжатия поднимается настолько, что принятое до этого тепло может быть отдано, например, охлаждающей воде с более высокой температурой. Для этой цели к установке необходимо подвести энергию, что в данном случае происходит за счет работы, совершенной компрессором.

ПРИНЦИП ДЕЙСТВИЯ судовой холодильной установки показан на рисунке. Пары хладагента, имеющие низкие давление и температуру, всасываются компрессором и сжимаются до 0,6—0,8 МПа, при этом температура превысит температуру забортной воды, применяемой для охлаждения конденсатора. В конденсаторе тепло хладагента забирается протекающей забортной водой, за счет чего сжижаются пары хладагента при постоянных температуре и давлении. Жидкий хладагент после конденсатора попадает в расширительный клапан, где его давление снижается. Одновременно происходит резкое снижение температуры, и хладагент из жидкости превращается в пар с очень большим влагосодержанием. После выхода из расширительного клапана хладагент испаряется в испарителе и забирает из рефрижераторной камеры требующееся для этого тепло. Для обеспечения лучшей циркуляции воздуха, способствующей более интенсивному теплообмену, в испарительной камере устанавливают вентилятор. Он забирает воздух из рефрижераторной камеры и снова нагнетает туда воздух, охлажденный в испарительной камере.

ХОЛОДИЛЬНЫЕ АГЕНТЫ И ХЛАДОНОСИТЕЛИ. Охлаждающие рабочие тела делятся в основном на первичные — холодильные агенты и вторичные — хладоносители.

Холодильный агент под воздействием компрессора циркулирует через конденсатор и испарительную систему. Фрион R22, 134a, 401.

Хладоносители применяются в крупных установках кондиционирования воздуха и в холодильных установках, охлаждающих грузы. В этом случае через испаритель циркулирует хладоноситель, который затем направляется в помещение, подлежащее охлаждению

Наиболее распространенным хладоносителем в больших рефрижераторных установках является рассол — водный раствор хлористого кальция, к которому для уменьшения коррозии добавляют ингибиторы.

ЭЛЕМЕНТЫ:

КОМПРЕССОР предназначен для сжатия и нагнетания в конденсатор паров хладагента.

В качестве недостатков двухступенчатого компрессора можно выделить лишь высокое давление, влекущее за собой увеличение температуры нагрева основных рабочих частей компрессора, но эта проблема не столь существенна, если компрессорное оборудование установлено в хорошо проветриваемом помещении.

Принцип действия этого компрессора во многом схож с работой поршневого воздушного компрессора. Для обеспечения низких температур компрессор может выполняться двухступенчатым. Имеются конструкции, предусматривающие перевод компрессора из режима одноступенчатого в режим двухступенчатого сжатия в зависимости от потребности.

При сжатии паров происходит повышение не только давления, но и температуры.

КОНДЕНСАТОРЫ. Как отмечалось, большинство конденсаторов выполняются кожухотрубными и охлаждаются водой. Здесь видно, что холодильный агент проходит снаружи трубок, а охлаждающая вода движется внутри них. В конденсаторе, охлаждаемом забортной водой, предусматривается двухходовое движение воды.

У конденсаторов, имеющих длину 3 м и более, предусматривают двойной выход жидкого агента, с тем, чтобы обеспечить бесперебойное поступление жидкости в систему во время качки судна.

ИСПАРИТЕЛИ. Испарители делятся на два вида: испарители непосредственного охлаждения, в которых холодильный агент охлаждает непосредственно воздух, и кожухотрубные, в которых холодильный агент охлаждает хладоноситель.

Простейшим испарителем непосредственного охлаждения является пучок трубок с увеличенной поверхностью благодаря их оребрению. Холодильный агент кипит в трубках и охлаждает воздух, который прогоняется снаружи вентилятором, обеспечивающим циркуляцию воздуха.

ВСПОМОГАТЕЛЬНОЕ ОБОРУДОВАНИЕ.

МАСЛООТДЕЛИТЕЛЬ устанавливается на стороне нагнетания компрессора и является обязательной частью агрегатов с винтовыми компрессорами

ОСУШИТЕЛИ холодильного агента обязательно используются во фреоновых установках для удаления влаги, оказавшейся в системе

ЖИДКОСТНЫЙ РЕСИВЕР может включаться в состав установки по следующим соображениям: являясь дополнительной емкостью, он, во-первых, создает резерв холодильного агента в системе, необходимый для работы установки в различных режимах; во-вторых, обеспечивает хранение агента, когда необходимо откачать его из системы.

В малых установках откачиваемый из системы холодильный агент обычно собирают в конденсатор.

АНО ДПО «УКЦ «УНИВЕРСИТЕТ КЛИМАТА»

Основные понятия, связанные с работой холодильной машины

Охлаждение в кондиционерах производится за счет поглощения тепла при кипении жидкости. Когда мы говорим о кипящей жидкости, мы, естественно, думаем, что она горячая. Однако это не совсем верно.

Во-первых, температура кипения жидкости зависит от давления окружающей среды. Чем выше давление, тем выше температура кипения, и наоборот: чем ниже давление, тем ниже температура кипения. При нормальном атмосферном давлении, равном 760 мм рт.ст. (1 атм), вода кипит при плюс 100°С, но если давление пониженное, как например в горах на высоте 7000-8000 м, вода начнет кипеть уже при температуре плюс 40-60°С.

Во-вторых, при одинаковых условиях разные жидкости имеют различные температуры кипения.

Например, фреон R-22, широко используемый в холодильной технике, при нормальном атмосферном давлении имеет температуру кипения минус 4°,8°С.

Если жидкий фреон находится в открытом сосуде, то есть при атмосферном давлении и температуре окружающей среды, то он немедленно вскипает, поглощая при этом большое количество тепла из окружающей среды или любого материала, с которым находится в контакте. В холодильной машине фреон кипит не в открытом сосуде, а в специальном теплообменнике, называемом испарителем. При этом кипящий в трубках испарителя фреон активно поглощает тепло от воздушного потока, омывающего наружную, как правило, оребренную поверхность трубок.

Рассмотрим процесс конденсации паров жидкости на примере фреона R-22. Температура конденсации паров фреона, так же, как и температура кипения, зависит от давления окружающей среды. Чем выше давление, тем выше температура конденсации. Так, например, конденсация паров фреона R-22 при давлении 23 атм начинается уже при температуре плюс 55°С. Процесс конденсации фреоновых паров, как и любой другой жидкости, сопровождается выделением большого количества тепла в окружающую среду или, применительно к холодильной машине, передачей этого тепла потоку воздуха или жидкости в специальном теплообменнике, называемом конденсатором.

Естественно, чтобы процесс кипения фреона в испарителе и охлаждения воздуха, а также процесс конденсации и отвод тепла в конденсаторе были непрерывными, необходимо постоянно «подливать» в испаритель жидкий фреон, а в конденсатор постоянно подавать пары фреона. Такой непрерывный процесс (цикл) осуществляется в холодильной машине.

Наиболее обширный класс холодильных машин базируется на компрессионном цикле охлаждения, основными конструктивными элементами которого являются компрессор, испаритель, конденсатор и регулятор потока (капиллярная трубка), соединенные трубопроводами и представляющие собой замкнутую систему, в которой циркуляцию хладагента (фреона) осуществляет компрессор. Кроме обеспечения циркуляции, компрессор поддерживает в конденсаторе (на линии нагнетания) высокое давление порядка 20-23 атм.

Теперь, когда рассмотрены основные понятия, связанные с работой холодильной машины, перейдем к более подробному рассмотрению схемы компрессионного цикла охлаждения, конструктивному исполнению и функциональному назначению отдельных узлов и элементов.

Схема компрессионного цикла охлаждения

Кондиционер — это та же холодильная машина, предназначенная для тепловлажностной обработки воздушного потока. Кроме того, кондиционер обладает существенно большими возможностями, более сложной конструкцией и многочисленными дополнительными опциями. Обработка воздуха предполагает придание ему определенных кондиций, таких как температура и влажность, а также направление движения и подвижность (скорость движения). Остановимся на принципе работы и физических процессах, происходящих в холодильной машине (кондиционере). Охлаждение в кондиционере обеспечивается непрерывной циркуляцией, кипением и конденсацией хладагента в замкнутой системе. Кипение хладагента происходит при низком давлении и низкой температуре, а конденсация — при высоком давлении и высокой температуре. Принципиальная схема компрессионного цикла охлаждения показана на рис. 1.

 

Схема компрессионного цикла охлаждения
Рис. 1. Схема компрессионного цикла охлаждения

 

Начнем рассмотрение работы цикла с выхода испарителя (участок 1-1). Здесь хладагент находится в парообразном состоянии с низким давлением и температурой.

Парообразный хладагент всасывается компрессором, который повышает его давление до 15-25 атм и температуру до плюс 70-90°С (участок 2-2).

Далее в конденсаторе горячий парообразный хладагент охлаждается и конденсируется, то есть переходит в жидкую фазу. Конденсатор может быть либо с воздушным, либо с водяным охлаждением в зависимости от типа холодильной системы.

На выходе из конденсатора (точка 3) хладагент находится в жидком состоянии при высоком давлении. Размеры конденсатора выбираются таким образом, чтобы газ полностью сконденсировался внутри конденсатора. Поэтому температура жидкости на выходе из конденсатора оказывается несколько ниже температуры конденсации. Переохлаждение в конденсаторах с воздушным охлаждением обычно составляет примерно плюс 4-7°С.

При этом температура конденсации примерно на 10-20°С выше температуры атмосферного воздуха.

Затем хладагент в жидкой фазе при высокой температуре и давлении поступает в регулятор потока, где давление смеси резко уменьшается, часть жидкости при этом может испариться, переходя в парообразную фазу. Таким образом, в испаритель попадает смесь пара и жидкости (точка 4).

Жидкость кипит в испарителе, отбирая тепло от окружающего воздуха, и вновь переходит в парообразное состояние.

Размеры испарителя выбираются таким образом, чтобы жидкость полностью испарилась внутри испарителя. Поэтому температура пара на выходе из испарителя оказывается выше температуры кипения, происходит так называемый перегрев хладагента в испарителе. В этом случае даже самые маленькие капельки хладагента испаряются и в компрессор не попадает жидкость. Следует отметить, что в случае попадания жидкого хладагента в компрессор, так называемого «гидравлического удара», возможны повреждения и поломки клапанов и других деталей компрессора.

Перегретый пар выходит из испарителя (точка 1), и цикл возобновляется.

Таким образом, хладагент постоянно циркулирует по замкнутому контуру, меняя свое агрегатное состояние с жидкого на парообразное и наоборот.

Все компрессионные циклы холодильных машин включают два определенных уровня давления. Граница между ними проходит через нагнетательный клапан на выходе компрессора с одной стороны и выход из регулятора потока (из капиллярной трубки) с другой стороны.

Нагнетательный клапан компрессора и выходное отверстие регулятора потока являются разделительными точками между сторонами высокого и низкого давлений в холодильной машине.

На стороне высокого давления находятся все элементы, работающие при давлении конденсации.

На стороне низкого давления находятся все элементы, работающие при давлении испарения.

Несмотря на то, что существует много типов компрессионных холодильных машин, принципиальная схема цикла в них практически одинакова.

Теоретический и реальный цикл охлаждения.

Цикл охлаждения можно представить графически в виде диаграммы зависимости абсолютного давления и теплосодержания (энтальпии). На диаграмме (рис. 2) представлена характерная кривая отображающая процесс насыщения хладагента.

Левая часть кривой соответствует состоянию насыщенной жидкости, правая часть — состоянию насыщенного пара. Две кривые соединяются в центре в так называемой «критической точке», где хладагент может находиться как в жидком, так и в парообразном состоянии. Зоны слева и справа от кривой соответствуют переохлажденной жидкости и перегретому пару. Внутри кривой линии помещается зона, соответствующая состоянию смеси жидкости и пара.

Рассмотрим схему теоретического (идеального) цикла охлаждения с тем, чтобы лучше понять действующие факторы (рис. 3).

Рассмотрим наиболее характерные процессы, происходящие в компрессионном цикле охлаждения.

Сжатие пара в компрессоре.

Холодный парообразный насыщенный хладагент поступает в компрессор (точка С`). В процессе сжатия повышаются его давление и температура (точка D). Теплосодержание также повышается на величину, определяемую отрезком НС`-HD, то есть проекцией линии C`-D на горизонтальную ось.

Конденсация.

В конце цикла сжатия (точка D) горячий пар поступает в конденсатор, где начинается его конденсация и переход из состояния горячего пара в состояние горячей жидкости. Этот переход в новое состояние происходит при неизменных давлении и температуре. Следует отметить, что, хотя температура смеси остается практически неизменной, теплосодержание уменьшается за счет отвода тепла от конденсатора и превращения пара в жидкость, поэтому он отображается на диаграмме в виде прямой, параллельной горизонтальной оси.

 

Диаграмма давления и теплосодержания
Риc. 2. Диаграмма давления и теплосодержания
Изображение теоретического цикла сжатия на диаграмме
Рис. 3. Изображение теоретического цикла сжатия на диаграмме «Давление и теплосодержание»

 

Процесс в конденсаторе происходит в три стадии: снятие перегрева (D-E), собственно конденсация (Е-А) и переохлаждение жидкости (А-А`).

Рассмотрим кратко каждый этап.

Снятие перегрева (D-E).

Это первая фаза, происходящая в конденсаторе, и в течение ее температура охлаждаемого пара снижается до температуры насыщения или конденсации. На этом этапе происходит лишь отъем излишнего тепла и не происходит изменение агрегатного состояния хладагента.

На этом участке снимается примерно 10-20% общего теплосъема в конденсаторе.

Конденсация (Е-А).

Температура конденсации охлаждаемого пара и образующейся жидкости сохраняется постоянной на протяжении всей этой фазы. Происходит изменение агрегатного состояния хладагента с переходом насыщенного пара в состояние насыщенной жидкости. На этом участке снимается 60-80% теплосъема.

Переохлаждение жидкости (А-А`).

На этой фазе хладагент, находящийся в жидком состоянии, подвергается дальнейшему охлаждению, в результате чего его температура понижается. Получается переохлажденная жидкость (по отношению к состоянию насыщенной жидкости) без изменения агрегатного состояния.

Переохлаждение хладагента дает значительные энергетические преимущества: при нормальном функционировании понижение температуры хладагента на один градус соответствует повышению мощности холодильной машины примерно на 1% при том же уровне энергопотребления.

Количество тепла, выделяемого в конденсаторе.

Участок D-A` соответствует изменению теплосодержания хладагента в конденсаторе и характеризует количество тепла, выделяемого в конденсаторе.

Регулятор потока (А`-B).

Переохлажденная жидкость с параметрами в точке А` поступает на регулятор потока (капиллярную трубку или терморегулирующий расширительный клапан), где происходит резкое снижение давления. Если давление за регулятором потока становится достаточно низким, то кипение хладагента может происходить непосредственно за регулятором, достигая параметров точки В.

Испарение жидкости в испарителе (В-C).

Смесь жидкости и пара (точка В) поступает в испаритель, где она поглощает тепло от окружающей среды (потока воздуха) и переходит полностью в парообразное состояние (точка С). Процесс идет при постоянной температуре, но с увеличением теплосодержания.

Как уже говорилось выше, парообразный хладагент несколько перегревается на выходе испарителя. Главная задача фазы перегрева (С-С`) — обеспечение полного испарения остающихся капель жидкости, чтобы в компрессор поступал только парообразный хладагент. Для этого требуется повышение площади теплообменной поверхности испарителя на 2-3% на каждые 0,5°С перегрева. Поскольку обычно перегрев соответствуют 5-8°С, то увеличение площади поверхности испарителя может составлять около 20%, что безусловно оправдано, так как увеличивает эффективность охлаждения.

Количество тепла, поглощаемого испарителем.

Участок HB-НС` соответствует изменению теплосодержания хладагента в испарителе и характеризует количество тепла, поглощаемого испарителем.

Реальный цикл охлаждения.

В действительности в результате потерь давления, возникающих на линии всасывания и нагнетания, а также в клапанах компрессора, цикл охлаждения отображается на диаграмме несколько иным образом (рис. 4).

Из-за потерь давления на входе (участок C`-L) компрессор должен производить всасывание при давлении ниже давления испарения.

С другой стороны, из-за потерь давления на выходе (участок М-D`), компрессор должен сжимать парообразный хладагент до давлений выше давления конденсации.

Необходимость компенсации потерь увеличивает работу сжатия и снижает эффективность цикла.

Помимо потерь давления в трубопроводах и клапанах, на отклонение реального цикла от теоретического влияют также потери в процессе сжатия.

 

Реальный цикл охлаждения
Рис. 4. Изображение цикла реального сжатия на диаграмме «Давление-теплосодержание» C`L: потеря давления при всасывании MD: потеря давления при выходе HDHC`: теоретический термический эквивалент сжатия HD`HC`: реальный термический эквивалент сжатия C`D: теоретическое сжатие LM: реальное сжатие

 

Во-первых, процесс сжатия в компрессоре отличается от адиабатического, поэтому реальная работа сжатия оказывается выше теоретической, что также ведет к энергетическим потерям.

Во-вторых, в компрессоре имеются чисто механические потери, приводящие к увеличению потребной мощности электродвигателя компрессора и увеличению работы сжатия.

В третьих, из-за того, что давление в цилиндре компрессора в конце цикла всасывания всегда ниже давления пара перед компрессором (давления испарения), также уменьшается производительность компрессора. Кроме того, в компрессоре всегда имеется объем, не участвующий в процессе сжатия, например, объем под головкой цилиндра.

Оценка эффективности цикла охлаждения

Эффективность цикла охлаждения обычно оценивается коэффициентом полезного действия или коэффициентом термической (термодинамической) эффективности.

Коэффициент эффективности может быть вычислен как соотношение изменения теплосодержания хладагента в испарителе (НС-НВ) к изменению теплосодержания хладагента в процессе сжатия (НD-НС).

Фактически он представляет собой соотношение холодильной мощности и электрической мощности, потребляемой компрессором.

Причем он не является показателем производительности холодильной машины, а представляет собой сравнительный параметр при оценке эффективности процесса передачи энергии. Так, например, если холодильная машина имеет коэффициент термической эффективности, равный 2,5, то это означает, что на каждую единицу электроэнергии, потребляемую холодильной машиной, производится 2,5 единицы холода.

 

 

Принцип работы холодильной машины —

Каков принцип действия холодильной машины, и какие процессы происходят во время её работы. Для конечного потребителя холодильного оборудования, человека, которому необходим искусственный холод на его предприятии, будь это хранение или заморозка продукции, кондиционирование помещения или охлаждение молока, воды и т.д., не обязательно детально знать и понимать теорию фазовых превращений в холодильном оборудовании. Но основные знания в этой сфере помогут ему в правильном выборе необходимого холодильного оборудования и поставщика.

 

Также посмотрите принцип работы системы охлаждения жидкостей.

 

Холодильная машина предназначена для забора тепла (энергии) от охлаждаемого тела. Но по закону сохранения энергии, тепло просто так никуда не исчезнет, следовательно, взятую энергию необходимо перенести (отдать).

 

Процесс охлаждения основан на физическом явлении поглощения тепла при кипении (испарении) жидкости (жидкого хладагента). Компрессор холодильной машины предназначен для отсасывания газа из испарителя и сжатия, нагнетания  его в конденсатор. При сжатии и нагревании паров хладагента мы сообщаем им энергию (или тепло), охлаждая и расширяя, мы отбираем энергию. Это основной принцип, на основе которого происходит перенос тепла и работает холодильная установка. В холодильном оборудовании для переноса тепла применяют хладагенты.

 

 

 

Холодильный компрессор 1 отсасывает газообразный хладагент (фреон) из испарителей (теплообменник или возду­хоохладитель) 3, сжимает его и нагнетает в конденсатор 2 (воздушный или водяной). В конденсаторе 2 хладагент конденсируется (охлаждается потоком воздуха от вентилятора или потоком воды) и переходит в жидкое состояние. Из конденсатора 2 жид­кий хладагент (фреон) попадает в ресивер 4, где происходит его накопление. Также ресивер необходим для постоянного поддержания необходимого уровня хладагента. Ресивер оснащен запорными вентилями 19 на входе и выходе.  Из ресивера хладагент поступает в фильтр-осушитель 9, где происходит удаление остатков влаги, приме­сей и загрязнений, после этого проходит через смотровое стекло с индикатором влажности 12, соленоид­ный вентиль 7 и дросселируется терморегулирующим вентилем 17 в испаритель 3.

 

Терморегулирующий вентиль применяется для регулирования подачи хладагента в испаритель

 

В испарителе хладагент кипит, забирая тепло от объекта охлаждения. Пары хладагента из испа­рителя через фильтр на всасывающей магистрали 11, где происходит очис­тка их от загрязнений, и отделитель жидкости 5 поступают в компрессор 1. Затем цикл работы холо­дильной машины повторяется.

 

Отделитель жидкости 5 предотвращает попадание жидкого хладагента в компрессор.

 

Для обеспечения гарантированного возврата масла в картер компрес­сора на выходе из компрессора устанавливаться маслоотделитель 6. При этом масло через запорный вентиль 24, фильтр 10 и смотровое стекло 13 по линии возврата масла поступает в компрессор.

 

Виброизоляторы 25, 26 на всасывающей и нагнетательной магистралях обес­печивают гашение вибраций при работе компрессора и препятствуют их распространению по холо­дильному контуру.

 

Компрессор оснащён картерным нагревателем 21 и двумя запорными вентилями 20.

 

Картерный нагреватель 21 необходим для выпаривания хладагента из масла, предотвращения конденсации хладагента в картере компрессора во время его стоянки и поддержания необходи­мой температуры масла.

 

В холодильных машинах с полугерметичными поршневыми компрессорами, у которых в системе смазки используется масляный насос, применяется реле контроля давления масла 18. Это реле предназначено для аварийного отключения компрессора в случае снижения давления масла в системе смазки.

 

В случае установки агрегата на улице он должен быть допол­нительно укомплектован гидравлическим регулятором давления конденсации, для обеспечения стабильной работы в зимних условиях и поддержания необходимого давления конденсации в холодное время года.

 

Реле высокого давления 14 управляют включением/выключением  вентиляторов конденсатора, для поддержания необходимого давления конденсации.

 

Реле низкого давления 15 управляет включением/выключением компрессора.

 

Аварийное реле высокого и низкого давлений 16 предназначено для аварийного отключения компрессора в случае пониженного или повышенного давления.

 

Назначение и принцип действия холодильных установок

Категория: Судовые Холодильные установки.

Холодильными или рефрижераторными называют установки, предназначенные для искусственного понижения температуры в помещении для сохранения или замораживания скоропортящихся продуктов, приготовления льда и кондиционирования воздуха.

На судах применяются в основном компрессионные холодильные установки, состоящие из компрессора, конденсатора, испарителя, расширителя или терморегулирующего вентиля (ТРВ). В установках используется рабочее вещество (хладагент), способное кипеть при низких температурах с понижением давления.

По Правилам Регистра установка должна иметь два комплекта указанного оборудования. Холодопроизводительность ее при работе одного комплекта оборудования должна обеспечивать поддержание требуемых температур в охлаждаемых помещениях в заданном районе плавания судна круглосуточно.

Под холодопроизводительностью установки понимается количество тепла, отнимаемое ею из окружающей среды в единицу времени.

На рис. 128, а показана принципиальная схема компрессионной холодильной установки.

Понижение и поддержание заданной температуры воздуха в охлаждаемом помещении обеспечивается отводом из него проникающего извне тепла. Для этого внутри помещения устанавливается испаритель, по которому циркулирует непрерывно хладагент, кипящий в испарителе при низкой температуре. На испарение и перегрев паров хладагента и используется проникающее в помещение тепло. Пары хладагента всасываются компрессором из испарителя, сжимаются и подаются в конденсатор. Тепло, отведенное из помещения и приобретенное в компрессоре в процессе сжатия, отдается парами забортной циркуляционной воде в процессе конденсации в конденсаторе. Конденсат (жидкий хладагент) подается из конденсатора в ТРВ, где дросселируется через отверстие малого диаметра, расширяется с понижением давления и температуры до температуры кипения и поступает в испаритель. Описанный процесс повторяется вновь.

Похожие статьи

Метки: Судовые Холодильные установки

Для того, чтобы оставить комментарий, войдите или зарегистрируйтесь.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *