8-3842-33-85-00 - магазин жидких обоев

г. Кемерово, Рынок "Привоз" бокс №1

Теплоизоляция это что – Теплоизоляция. Виды, свойства, характеристики, область применения. Теплоизоляционные, кровельные, фасадные, демонтажные, покрасочные, общестроительные работы в Красноярске. ООО ПСК «Стевин»

Содержание

Теплоизоляция — ТеплоВики — энциклопедия отопления

Материал из ТеплоВики — энциклопедия отоплении

Теплоизоляция — это элементы конструкции, уменьшающие передачу тепла. Также термин может означать материалы для выполнения таких элементов или комплекс мероприятий по их устройству.

Метод изоляции или отделения одного теплопроводящего тела от другого с помощью не проводящего тепло материала с целью уменьшения или предотвращения передачи тепла; также теплоизолирующий материал или конструкция.

Формы и составы изоляции

Теплоизоляция может иметь разные состав и форму, что определяется конкретной сферой ее применения. По составу она может быть животной, растительной или минеральной, а также комбинацией из материалов этих типов. Теплоизоляционные материалы, в силу характера своего использования, как правило, являются легкими и непрочными. За исключением некоторых специфических теплоизоляционных материалов, таких, как кирпичи, строительные блоки и доски, которые имеют достаточно высокую механическую прочность, у большинства изоляционных материалов прочность невелика.

Заполняющая теплоизоляция

Изоляция-заполнитель обычно заливается или засыпается в пространство между несущими элементами конструкции. К теплоизоляционным материалам этого рода относятся, например, асбестовый порошок, пробковая крошка, диатомит, измельченный гипс, минеральная вата (базальтовая, шлаковая или стеклянная), резаная бумага, порошок магнезии, порошок силикагеля, древесные опилки, гранулы вермикулита (вспученной слюды), пемза, перлит и легкие шлаки. Некоторые теплоизолирующие заполнители используются как связующие в легких бетонах.

Гибкие формы

Теплоизоляционные материалы этого рода (маты, листы, ватные прокладки и войлок) позволяют осуществлять теплоизоляцию путем обертывания, прибивания гвоздями или с помощью клея. Это особенно удобно для неплоских поверхностей. Гибкие теплоизоляционные материалы могут содержать асбестовый войлок, тростник, конский волос, хлопок, пеньку, джут, капок, минеральную вату, бумагу, морские водоросли, губчатую резину и древесные волокна. Некоторые из них включают те или иные поверхностно-упрочняющие вещества.

Жесткая теплоизоляция

Теплоизоляция такого рода может иметь форму блоков, досок, кирпичей, листов или пластин. Многие теплоизоляционные конструкции этого рода представляют собой комбинацию различных исходных материалов с внутренними связями, воздушными прослойками и обработкой поверхности (либо без них). Жесткая теплоизоляция прибивается гвоздями или крепится проволокой либо с помощью клея. В ее состав могут входить асбест, силикат кальция, стеклянные шарики, ацетат целлюлозы, пробка, диатомит, обожженная глина, гипс, тальк, тростник, минеральная вата, бумага, губчатая резина, солома, вермикулит и дерево. В строительстве изоляционные панели используются в качестве защитного покрытия как основа для нанесения штукатурки и для внутренней отделки. Такое использование теплоизоляционных материалов больше зависит от их прочности, внешнего вида или звукопроницаемости, чем от теплоизоляционной способности.

Теплоизоляция для труб

Трубная теплоизоляция формуется в виде полуцилиндров, соответствующих диаметру труб, а для труб большого размера — в виде отдельных сегментов, либо применяются гибкие формы изоляции. В некоторых случаях для трубопроводов используется изоляция-заполнитель, которая укладывается между поверхностью трубы и защитной оболочкой. Жесткая изоляция крепится к трубе лентой или проволокой; гибкая изоляция наматывается на трубу и закрепляется шпагатом или проволокой. Жесткой теплоизоляцией для труб могут служить асбест, силикат кальция, стеклянные шарики, пробка, диатомит, тальк, минеральная вата и вермикулит. Гибкие формы включают шерстяной войлок и минеральную вату. В трубах, поставляемых вместе с теплоизоляцией, используется асбестовое волокно или минеральная вата.

Цементы

Изолирующие цементы выпускаются в виде сухого порошка или небольших шариков и требуют только добавления воды, чтобы получился раствор нужной консистенции. Они используются на оборудовании, имеющем сложные обводы, например, на кранах, трубной арматуре и турбинах, а также в качестве наружного покрытия для других форм изоляции. Теплоизоляционные композиции включают асбест, диатомит, тальк, вермикулит и перлит.

Отражательные покрытия

Отражательные покрытия эффективно снижают лучистый теплообмен, когда поверхности с низкой степенью черноты обращены в открытое пространство. В качестве отражателя широко используется алюминиевая фольга. Она производится в виде однослойной или многослойной композиции с бумажной подложкой или без нее и используется в комбинации с изоляционными панелями, гибкой и трубной изоляциями. Стальные листы толщиной ок. 0,15 мм также используются в качестве отражателей, главным образом в холодильной технике.

Выбор теплоизоляции

Выбор различных типов изоляции для конкретных применений определяется в основном способностью материала не разрушаться в условиях длительного воздействия рабочего диапазона температур. Животные, растительные и минеральные композиции могут применяться при температурах, не превышающих 80—90°С, характерных для холодильных установок и строительных технологий. Большинство минеральных композиций можно использовать при температурах до 315°С, а некоторые из них могут применяться в диапазоне температур от -20 до 980°С. Выше 980°С используются диатомит и легкий огнеупорный кирпич.

Выбор того или иного типа изоляции зависит в основном от ее физико-механических свойств и назначения. Например, в случае больших нагрузок на перекрытия (в холодильных камерах и мартеновских печах) прочность изоляции на сжатие может иметь большее практическое значение, чем теплопроводность. Для авиационной техники и вообще на транспорте обычно предпочтительнее легкие типы изоляции с большим термическим сопротивлением.

Легкость установки теплоизоляции имеет решающее значение при выборе теплоизоляционного материала, поскольку во многих случаях стоимость установки превышает стоимость самой изоляции. Основные сферы использования изоляции — электротехническое оборудование, строительные сооружения, энергетическое и обрабатывающее оборудование и транспорт.

Литература

  • Практические расчеты тепловой изоляции. М., 1976
  • Грушман Р.П. Справочник теплоизолировщика. Л., 1980
  • Тепловая изоляция. М., 1985 Хижняков С.В.

См.также

Источники

http://www.wilo.ua

Целлюлозный утеплитель — Википедия

Серая строительная вата

Целлюлозный утеплитель (целлюлозная вата, «эковата») — рыхлый, лёгкий волокнистый строительный изоляционный материал серого или светло-серого цвета, применяется как утеплитель.

Состоит примерно на 80 % из газетной бумаги/макулатуры и на 20 % из нелетучих пламегасящих веществ, в качестве которых чаще всего используются борная кислота и бура.

Целлюлозный утеплитель — материал серого (светло-серого) цвета обычно состоит на 81 % из вторичной целлюлозы (переработанной газетной макулатуры), на 12 % — из антисептика (борная кислота), и на 7 % — из антипиренов (бура)[источник не указан 3383 дня]. В волокнах материала находится лигнин, который при увлажнении материала связывает волокна и элементы конструкции. Антисептик и антипирен составляющие этого материала являются малотоксичными, умеренно вредными, нелетучими, природными компонентами. Целлюлозный утеплитель долго противостоит открытому огню, не гниет, имеет хорошие показатели тепло- и звукоизоляции, на уровне лучших образцов изоляционных материалов. Коэффициент теплопроводности материала равен 0,037-0,042 Вт/(м*K), а также он способен удерживать до 20 % влажности в верхних слоях утеплителя, что почти не влияет на теплоизолирующие свойства. Материал легко отдаёт влагу в окружающую среду за счет капиллярной структуры целлюлозных волокон и при высыхании не теряет своих свойств. Плотность применения составляет 28-65 кг/м3. Группа горючести зависит от технических условий компании производителя. Эталонные показатели: Г2 — умеренно горючий (ГОСТ 30244), В2 (DIN 4102) — умеренно воспламеняемый (ГОСТ 30402), Д2 — умеренно дымообразующей способностью (2.14.2 и 4.18 ГОСТ 12.1.044), РП-1 — распространение пламени по поверхности «0» (ДСТУ Б В.2.7-38-95) Воздухопроницаемость — низкая, при плотности материала 35,0-40,0 кг/м3 всего (80-120)х10-6 m3/msPa, паропроницаемость — 0,3 мг/(мчПа), сорбционное увлажнение по ГОСТ 17177.5 за 72 часа — 16 %. Значение pH = 7,8—8,3, поэтому целлюлозный утеплитель является химически пассивной средой и не вызывает коррозии контактирующих с ней металлов.

Теплоизоляционные свойства целлюлозы были известны достаточно давно. В конце XIX века также были проведены широкое исследование свойств бумажного материала, в результате чего была создана технология производства целлюлозного утеплителя. В 1928 году в Германии открылось первое производство утеплителя.

После Второй мировой войны, страны Европы, пострадавшие в войне, испытали настоящий строительный бум. Разрабатывались и развивались новые технологии домостроения, в том числе и каркасного, особенно активно развитие шло в Канаде и Германии. В 1950-е годы, когда объём строительства зданий значительно вырос и возникла потребность в качественном утеплителе, спрос на целлюлозный материал значительно увеличился. За счёт большого спроса на целлюлозный утеплитель, технологии производства быстро стали совершенствоваться. Также совершенствовалась технология утепления и оборудование для производства и монтажа, были разработаны способы использования. Появились профессиональные выдувные машины, позволяющие резко увеличить скорость и качество монтажа изоляции.

В настоящее время целлюлозное утепление популярно в США, Канаде, ряде европейских стран, набирает популярность в Японии и других странах азиатского бассейна. В Финляндии, стране с 5-миллионным населением, производство утеплителя составляет 25 000 тонн в год (это более 1 млн м² изолированных помещений) — доля целлюлозного утеплителя на рынке утеплителей для индивидуального строительства доходит до 70 %. В США только в 2005 году более 340 000 зданий было построено с применением целлюлозного утеплителя.

В России, а точнее в СССР целлюлозный теплоизоляционный материал появился в 30-х годах XX столетия, но наибольшую популярность начал приобретать с 1993 года. Популярность утеплителя неуклонно растёт. Многие строительные фирмы и частные заказчики оценили её качества: технологичность, универсальность, экологичность и цену. На территории Российской Федерации сейчас активно действуют более 60 производств.

Целлюлозный утеплитель используется в России, Германии, Англии, Финляндии, Японии, США, Канаде и других европейских государствах. В разных странах утеплитель имеет различные торговые марки, при этом структурный состав утеплителя не везде одинаков.

В России данный утеплитель используется недавно, с 1992 года и технология, как и оборудование, да и само российское название данного утеплителя пришли из Финляндии. В последнее же время производство данного утеплителя и его примененние только набирают обороты. В Казахстане материал производится с 1999 года, в Эстонии — с 1990 года, в Литве — с 1994 года, а на Украине и в Белоруссии — начиная с 2007 года. Первая линия с полуавтоматической упаковкой в полиэтиленовые мешки была поставлена на Камский целлюлозно-бумажный комбинат в 1996 году. Позднее данная линия была перенесена в Тульскую область. В Екатеринбурге с 2007 года работает линия, производящая высококачественный целлюлозный утеплитель по современной финской технологии, которым прямо на заводе утепляются производимые там каркасно-панельные дома. Первое отечественное серийное оборудование, для производства эковаты, изготовлено в Тюмени, на сегодняшний день более 50 линий в СНГ, многие под маркой Эковата Экстра (желтый мешок). В Омске, Тюмени, Воронеже,Мытищах и Уфе выпускают утеплитель, для производства которого используется газетная бумага и природные борные минералы (целлюлоза 80 %, 10 % бура, 10 % борная кислота). С 2007 года производство освоено также в посёлке Пирогово Мытищинского района.С 2014 года производство налажено в Северодвинске.

Способы монтажа[править | править код]

В России на сегодняшний день ещё не приняты стандарты для монтажа эковаты.

Существует три способа монтажа целлюлозного утеплителя в строительстве:

  • Ручная укладка
  • Механизированная сухая укладка (с помощью выдувных установок)
  • Напыление увлажненного материала на поверхности (с помощью выдувных установок и комплекта для влажного нанесения)
Ручная укладка[править | править код]

При ручной укладке целлюлозный утеплитель разрыхляют подручными инструментами в любой ёмкости и раскладывают на утепляемую поверхность: полы, перекрытия, чердаки — или засыпают в полости здания: стены, мансарды, кровли. При установке в конструкциях необходимо соблюдение требуемой плотности установки, к примеру, для стен это мин. 60-70 кг/м³. для перекрытий — не менее 35-40 кг/м³. Ручная укладка в стеновые конструкции требует большого внимания и временных затрат, поэтому экономически эффективно использовать такой метод лишь при небольших объёмах.

Механизированная укладка[править | править код]

При механизированной укладке применяются выдувные установки, которые разрыхляют утеплитель в бункере и подают его в потоке воздуха к месту задувки или укладки на расстояние до 200 м по горизонтали и до 40 м по вертикали.

Влажная укладка[править | править код]

Влажная укладка отличается от механизированной только тем, что целлюлозный утеплитель наносится на конструкции с водой или с водой и клеем в качестве связующего компонента. При этом необходимо использование специальной форсунки и агрегата для подачи воды или клея под давлением. Влажно-клеевое нанесение материала в стены позволяет контролировать качество монтажа, оставляет достаточно ровную поверхность для последующих работ. При правильном нанесении утеплитель быстро высыхает — его можно закрывать другими материалами уже через 12 часов после монтажа.

Оборудование для монтажа[править | править код]

Целлюлозный утеплитель поставляется на объект в сжатом (спрессованным) виде (в 3-5 раз от номинальной плотности) или же в слегка уплотненной (не спрессованный) форме упакованный в полиэтилен, поэтому для использования его необходимо привести в начальное состояние. Эта процедура, а также процесс пневмопередачи материала в зону монтажа осуществляется с помощью специальных выдувных установок.

Оборудование для влажно-клеевого напыления требует наличия профессиональной выдувной техники с возможностью тонкой настройки, и компонуется в соответствии с характером работ и необходимой производительностью.

Полный комплект оборудования для монтажа целлюлозного утеплителя состоит из:

1 — Выдувная (нагнетательная) установка для подготовки и подачи целлюлозного утеплителя;

2 — Гибкие транспортные шланги разных диаметров для транспортировки целлюлозного утеплителя к месту ее укладки;

3 — Бензо-роторная крыльчатка для сбора целлюлозного утеплителя;

4 — Водяная электропомпа высокого давления для увлажнения целлюлозного утеплителя;

5 — Водяная насадка с разным количеством форсунок для напыления целлюлозного утеплителя;

6 — Вместительная тара для водно-клеевой смеси;

7 — Электроваликовые ножницы для подрезки и выравнивания напыленной поверхности целлюлозного утеплителя.

Изготовление утеплителя на основе целлюлозного волокна осуществляется как на больших заводах с производственной мощностью 5-10 т/ч, так и на малых или средних предприятиях (от 100 кг/ч). Цикл производства начинается с расфасовки макулатуры с ручной фильтрацией общей массы от крупных предметов (компакт-диски, файлы, пластиковые зажимы и т. п.), а также неподходящих сортов бумаги. Далее сырье подается на конвейер и начинается полностью автоматический процесс переработки.

Сперва производится первичное смешивание и дробление бумаги, после чего крупным магнитом извлекаются металлические предметы малого размера (скрепки, скобки и т. п.). Далее — очередной этап порезки, где происходит измельчение на 5-сантиметровые фрагменты. Полученной массой заполняется ёмкость, куда также добавляется антисептик и борная кислота. Дальнейшее измельчение позволяет получить частицы размером 4-5 мм, после чего добавляется ещё немного борной кислоты.

Этот цикл обработки макулатуры занимает около 5 минут. До того как волокно покинет фабрику, образцы берут на проверку, часть которых отправляется на испытания. Тест проверяет волокно на открытое горение: материал нагревается до 50°C, что симулирует нагревание солнечным светом. Бумага загорается, огонь распространяется, но быстро затухает благодаря буре,которая используется в качестве антипирена и если это происходит достаточно быстро, тест считается пройденным. Также тесты выполняют независимые компании, чтобы проверить результаты испытаний компаний производителя. На последнем этапе производится упаковка материала в мешки с расфасовкой по 5-20 кг. Плотность материала в мешках в 3-4 раза выше чем в открытом виде, потому перед использованием целлюлозный утеплитель взрыхляют.

что это такое, внутренняя тепло-отделка жилых помещений, термостойкая пленка или листовые материалы для изоляции стыков и откосов, что лучше использовать

Строя дома, люди заботятся об их прочности и внешней красоте, стараются максимально полно использовать доступную площадь. Но проблема в том, что в российском климате этого недостаточно. Обязательно потребуется обеспечивать усиленную теплозащиту, даже если строительство ведется в относительно теплой местности.

Особенности и описание

Теплоизоляция стен дома – это совокупность материалов и технических решений, препятствующих утечке тепла наружу через стены. Для решения этой задачи требуется:

  • отразить инфракрасные лучи во внутренние помещения дома;
  • заблокировать по возможности выход наружу тепла;
  • максимально затруднить конвективную утечку его;
  • гарантировать сохранность основных конструкций;
  • добиться стабильной гидроизоляции утепляющего слоя (даже непромокаемый лучше защищать дополнительно).

Такое определение в реальности, к сожалению, приходится корректировать. Ведь создание непроницаемой для тепловой энергии оболочки вокруг дома на практике или очень сложно и дорого, или вовсе нереализуемо по техническим причинам. Большие проблемы приносят так называемые мостики холода, разрывающие монолитность теплозащиты и понижающие ее эффективность. Существует только два способа решить эту проблему кардинально – применение пеностекла или торкретирование от границы с подвалом до конька. Но у обеих схем есть существенные недостатки, которые обязательно нужно учесть.

Кроме мостиков холода, придется обращать внимание на:

  • продуваемость материалов и конструкций;
  • их взаимодействие с влагой;
  • необходимость в пароизоляции или паропроницаемой оболочке;
  • прочность крепления и его нюансы;
  • интенсивность солнечного освещения;
  • среднегодовую и максимальную высоту снежного покрова.

Обзор сырья

Большое значение при теплоизоляции домашних стен имеет точность выбора основного материала. Так, органические средства теплозащиты представлены в первую очередь пенопластом разнородной плотности. Они имеют удельную массу от 10 до 100 кг на 1 куб. м. Это позволяет подобрать оптимальную по нагрузке на фундамент и тепловым качествам схему. Но есть серьезный недостаток: слабая стойкость к огню, поэтому есть потребность в конструкционной защите несгораемыми материалами.

Другие органические средства теплоизоляции – это:

  • продукты переработки лесных отходов и бракованной древесины;
  • плиты на основе торфа;
  • отходы сельского хозяйства (конструкции из соломы, камыша и так далее).

Термостойкая защита подобными способами вполне возможна. Но придется мириться со слабой устойчивостью к воде, к разрушительным биологическим агентам. Поэтому в современном строительстве такими блоками в качестве теплоизоляции пользуются все реже. Гораздо более востребованы оказываются минеральные материалы:

  • каменная вата;
  • стекловолокно;
  • блоки из перлита и вермикулита;
  • ячеистые бетоны и ряд других изделий.

Минераловатные плиты делают, перерабатывая расплав горных камней или отходов металлургического производства до состояния стекловидного волокна. Удельная масса получаемых изделий варьируется от 35 до 350 кг на 1 куб. м. Но при замечательном уровне сдерживания тепла минеральная вата недостаточно прочна и легко портится водой. Только наиболее современные разновидности ее имеют необходимую степень защиты.

По традиции часть людей пользуется для утепления стен керамзитом. Но такое решение трудно назвать оптимальным. Даже самый легкий сорт керамзита оказывает значительную нагрузку на основание. А использовать его придется много, потому что наружу будет уходить втрое больше тепла (при одинаковом слое), чем через самые эффективные утеплители. И, наконец, слой керамзита легко промокает и очень плохо сушится. Неудивительно, что пленка различных видов получает все более широкое распространение. Она помогает повысить гидроизоляцию внутренней части стен, особенно хорошо проявляет себя полиэтилен.

В отдельных случаях для теплозащиты стен применяется полиуретановая пена. Надежность такого покрытия оценена строителями по достоинству. Но обязательно придется для его нанесения надевать защитную экипировку. Пенная изоляция пропускает пар и сдерживает поступление воды. Допускается ее применение для закрытия щелей при монтаже в стену пластикового окна.

Монолитная листовая теплоизоляция монтируется проще, чем пенная, и не требует обычно специализированного оборудования.

Современные производители научились делать листы, способные работать в широком диапазоне температур и сохранять эластичность. С помощью этих же конструкций легко будет обеспечить теплозащиту труб и других входящих в дом коммуникаций. Теплоизоляционная мембрана бывает двух основных видов: первый сдерживает проникновение водяных паров изнутри помещения, а второй – позволяет образующемуся внутри стены пару свободно уходить. Ключевое значение при выборе второго вида материалов стоит уделить их паропропускной способности, то есть количеству уходящих испарений в единицу времени. Гибкая многослойная теплоизоляция применяется либо для утепления труб, либо для отражения тепловых лучей внутрь внешней фольгированной оболочкой.

Характеристики

Качественная теплоизоляция почти всегда выполняет одновременно и роль шумоизоляции. Выбор такого решения оправдан, потому что требуется максимально сократить расходы на строительство и снизить общую толщину стен. Надежное гашение звука невозможно реализовать, если не учесть отличия воздушных шумов (движущихся в воздухе) и ударных (передающихся при вибрации конструкций). Стены должны полноценно изолировать людей от воздушного шума. Наружные стены при этом имеют неодинаковый уровень защиты, который не нормируется.

Стандартные значения защиты от шума – всего лишь минимальные ориентиры, меньше их не должно быть в любом случае. На практике рекомендуется вовсе превысить эти показатели на 5-7 дБ, тогда обстановка станет комфортной. Для внешних стен поглощение воздушного шума советуют делать от 55 дБ, а вблизи железных дорог, аэропортов, федеральных трасс – как минимум 60 дБ. Поглощение звука обеспечивается пористыми либо волокнистыми тяжелыми материалами; чаще всего для этой цели применяют минеральную вату, песок. Сравнительно недавно начали использоваться мембраны на полимерной основе с губчатой структурой, имеющей толщину не более 0,5 см.

В большинстве случаев поглотитель шума располагают между материалами, отражающими звук. Но иногда практикуется двухслойное, четырехслойное или пятислойное покрытие.

Чтобы минимизировать проникновение звука внутрь, нужно разорвать мостики акустической передачи при помощи специальных креплений. Обязательно придется использовать акустические крепления, которые представлены множеством видов. Только специалисты смогут правильно выбрать подходящий вариант.

Рейтинг производителей

Сравнение свойств отдельных материалов логично дополнить сопоставлением уровня конкретных производителей. Базальтовая вата марки «Тизол» монтируется очень легко, величина листов составляет 100х50 см. Но нужно учитывать, что лист может рассыпаться из-за неоднородной плотности в разных местах, также в нем могут появляться изъяны. За сезон вата опускается на 15-20 мм. Приобрести «Тизол» можно в любом специализированном магазине.

Конкурирующая фирма «Роквол» может предложить базальтовую вату плотностью 37 кг на 1 куб. м. Здесь также все в порядке с монтажом при проемах каркаса в 59 см. Одна упаковка позволяет перекрыть около 6 м2 стены. Найти продукцию компании легко во многих торговых точках. Тара очень надежная, даже грубое обращение с ней (в умеренных пределах) не повредит материал; срок службы порадует домовладельцев.

«Техно-Роклайт» тоже относится к числу легко устанавливаемых материалов. Есть четыре ключевых типоразмера, позволяющих подобрать оптимальный вид в конкретном случае. Но укороченные волокна легко рассыпаются, потому работу допустимо вести только в перчатках и при надетом респираторе. Купить «Роклайт» в отдельных регионах РФ не получится. Тара недостаточно надежна, в процессе погрузки тюки могут развалиться.

Минеральная вата фирмы «Изовер» продается в виде рулонов и плит. Технологи сумели преодолеть их традиционную колкость и повысить прочность. Реализуется такой товар во всех специализированных магазинах. Нарезка и укладка довольно просты. Но есть и проблемы – неприятные ароматы, необходимость использовать защитные приспособления, недостаточная информативность надписей на упаковке.

Продукция Knauf отличается широким спектром вариантов и эффективно гасит звук. В составе минеральной ваты германского концерна отсутствуют токсичные фенолформальдегиды и многие другие компоненты. Исключено крошение материала, блоки очень легкие.

Поставить плиту можно под удобным углом. Что касается проблем, опять же нужно использовать средства защиты.

Как выбрать?

Разобравшись с марками, стоит еще раз изучить особенности конкретных видов. Специалисты рекомендуют предварять изучение отзывов определением подходящего типа утеплительного материала. Крайне редко сейчас применяют сыпучие наполнители, в основном, используются рулоны и плиты. Дополнительно вводится разграничение на волокнистый, жидкий и ячеистый форматы. Пользоваться вторым типом без специального оборудования бывает затруднительно.

Очень важно обращать внимание, подходит ли конкретный утеплитель только для внутренней или для внешней обработки стен. При выборе стоит также выяснять, насколько велик коэффициент теплопроводности – чем он меньше, тем большее количество тепла остается в доме. Если нужно добиться длительной службы покрытия, предпочтение отдают материалам, минимально впитывающим воду. Это же обстоятельство прямо влияет на устойчивость к появлению грибка. Следующий важный параметр – стойкость к действию пламени; отдельные материалы даже при нагреве до 1000 градусов не теряют исходной структуры.

Даже если утеплитель соответствует этим требованиям, полезно выяснить, насколько хорошо он:

  • сопротивляется деформирующим усилиям;
  • останавливает пар;
  • выдерживает воздействие грызунов и микроорганизмов.

Для внутренней теплоизоляции стен дома трудно отыскать что-то совершеннее пенополистирола. Плиты из него всегда тонкие и не уменьшают доступное пространство. Исключение впитывания влаги помогает вывести точку росы наружу и снизить промерзание стен. Что не менее важно, во многих случаях удается обойтись без пароизоляции.

А вот когда планируется утеплять стены извне, лучше применять ППУ.

Пенополиуретан в основном напыляют на защищаемую поверхность, создавая монолитное полотно, не имеющее ни единого стыка и участка, где утекало бы тепло. Превосходная адгезия дает возможность использовать этот материал на любой поверхности. Среди органических утеплителей на первом месте находятся минераловатные изделия. Экономичный вариант их всегда оснащается фольгированным слоем. Не стоит ставить финансовые соображения на первое место, тогда результат будет некачественным в любом случае.

Технологии процесса

Применение для теплоизоляции минеральной ваты оправдано в той ситуации, когда утепление снаружи не представляется возможным. Первым шагом закономерно становится очистка поверхности от грязи. Особенно важно избавиться от следов плесени и обработать пораженные ею участки антисептическими смесями. Малейшие выемки и трещины стоит заделать цементными составами. Эффективным методом борьбы с неглубокими (до 30 мм) отверстиями оказывается применение монтажной пены.

Если глубина их больше, придется дополнять пену паклей. Применять антисептики и грунтовки требуется аккуратно, каждый слой должен высохнуть перед нанесением следующего пласта. Чтобы максимально повысить эффективность работы, нужно выравнивать поверхности, обеспечивая особо плотное прижатие конструкции либо бескаркасных утеплителей. На поверхности из кирпича, пенобетона либо газобетона наносят штукатурку, а поверх нее делается слой жидкой гидроизоляции. Каркасы формируются из деревянных или стальных профилей.

Дистанция, разделяющая вертикальные опоры, делается несколько меньшей, чем ширина рулонов утеплителя. Тогда примыкание будет очень надежным. Зазор до стеновых конструкций делается таким, чтобы туда поместилась плита и осталось несколько десятков миллиметров воздушного разрыва. Достигается это при помощи точечного применения клеевых смесей.

Плиты предпочтительнее рулонов, поскольку они меньше скатываются; справиться с этой проблемой окончательно помогает применение горизонтальных планок.

Монтаж паровых барьеров производится с верхних долей конструкций, при работе движутся по горизонтали. Основной метод крепления – двусторонний скотч. На деревянные подложки можно прикреплять пароизоляционную пленку при помощи мебельного степлера. Рекомендуется делать нахлест минимум 100 мм, при этом обязательно делают напуски на углах, полу и потолках. Монтажная лента и строительный скотч идеально подходят для герметизации соединительных стыков.

Приближение пленки к поверхности означает необходимость заполнять такие участки жидкими герметиками. Над «пирогом» ставится реечная контробрешетка, монтажная ширина ее составляет от 1,5 до 2,5 см. Благодаря контробрешетке удается сделать полноценный вентилирующий зазор. Сверху над ней ставится лицевая декоративная оболочка. Чтобы отказаться от использования пароизоляции, изнутри монтируют фольгу, которая должна быть повернута вглубь комнаты.

Иначе ведутся работы при использовании рулонных блоков. По поверхности расставляются скобы в виде буквы «П», они позволят установить профили из металла. Типичное вертикальное расстояние составляет 0,6 м, а по горизонтали дистанция может быть несколько меньше. При замере нужного количества минеральной ваты нельзя забывать о допуске в 0,1 м. Ушки скоб заблокируют передвижение утеплителя по вертикали. Когда они прижаты, ставят профили и прикрепляют ГКЛ.

По мнению профессионалов, утепление внутри намного хуже, чем наружная теплоизоляция жилых помещений. Это самый эффективный на практике вариант, вдобавок он не отбирает полезного места и позволяет избежать возникновения конденсата. Еще важным преимуществом такого решения оказывается предотвращение мостиков холода. Внешняя изоляция от мороза проводится при помощи мокрой или сухой методики. Мокрый вариант подразумевает нанесение изолирующего слоя напрямую на стену и последующую отделку по нему.

Общая толщина утеплительного блока достигает 150 мм. Минеральную вату «сажают» на клей или зонтичные метизы. Основание рекомендуется армировать. После этого проводят лицевую отделку, которая одновременно имеет и защитную функцию. Подобное решение рекомендуют для кирпичных и газобетонных построек. Каркасные дома перед укладкой минваты покрывают жесткими настилами из ориентированных плит.

Недопустимо монтировать минеральную вату во время дождя и при высокой влажности воздуха. Теоретически она может сохнуть, но ждать этого понадобится очень длительное время. Утеплитель снаружи всегда перекрывается защищающей от влаги пленкой. На откосах ставится металлический фартук, надежно защищающий и от контактов с осадками, и от ветра, и от дождя. Вокруг стеклопакетов все зазоры должны быть закрыты монтажной пеной; желательно позаботиться о ее защите от влаги.

Нельзя ограничиться утеплением одних стен, очень важно предусмотреть теплозащиту кровли. Через перекрытия здание покидает до 1/5 всего тепла.

Так как большинство скатных крыш оборудуется легко воспламеняющимися материалами, нужно применять только негорючий изоляционный материал. Кроме того, он должен свободно пропускать пары воды и не впитывать саму воду. Для плоской кровли изолирующий слой нужно ставить максимально крепкий и устойчивый, иначе он не выдержит создающуюся нагрузку.

Как подготовиться?

Расчеты утеплительных элементов предельно важн. Если проводить их плохо или не проводить вообще, можно столкнуться с серьезными проблемами. Так, слабое утепление не позволит поддержать комфортную температуру в помещениях дома. Кроме того, оно переместит точку росы на внутреннюю сторону стены. Образование конденсата провоцирует заражение плесенью и другими гнилостными организмами. Слишком мощная теплоизоляция решает эту проблему, но она неоправдана экономически, поскольку увеличение толщины слоя лишь незначительно повышает практические качества.

Необходимо учитывать тепловое сопротивление, которое нормировано для различных регионов и ключевых населенных пунктов. Грамотный расчет позволяет построить максимально тонкую (насколько возможно) стену и не ухудшать при этом потребительские качества дома. Стандартная формула для расчетов выглядит как αyt= (R0tp/r-0,16-δ/λ) ·λyt. Слева от знака равенства находится необходимая толщина утеплителя. Справа, вслед за нормируемым сопротивлением, идут:

  • толщина стен;
  • коэффициент ухода тепла через их несущую часть;
  • показатель потери тепла сквозь утеплитель;
  • индекс однородности материала для теплового потока.

Термические характеристики в стенных «пирогах» с воздушными промежутками могут не учитываться для внешней облицовки и самой вентилируемой паузы. Выбор подходящей ширины единичного рулона или плиты обусловлен соображениями удобства при работе.

Вместе с этим нельзя забывать, что чем меньше стыков будет сделано, тем выше будет надежность монтируемой конструкции.

Как сделать самостоятельно?

Выполнить монтаж теплоизоляции стен своими руками довольно просто. Но есть ряд нюансов, которые часто упускаются из виду самодеятельными мастерами. Так, в холодный период года стоит немного прикрывать вытяжные вентиляционные каналы и полностью блокировать их при длительном отсутствии. Так как до 80% всех потерь через стены приходится на тепловые лучи, отражательные теплоизоляторы предпочтительнее обычных. В уже эксплуатирующихся домах часто приходится делать внутреннее утепление, что требует дополнительного монтажа пароизоляционной преграды.

Теплоизоляция стен дает положительный результат только в том случае, если предварительно подготовлена теплозащита подвального помещения по всем правилам. Вентилируемый фасад создается путем прикрепления утеплительного слоя на дюбели или при помощи каркаса с внешней отделкой любым удобным способом. Если стену делают из кирпича, можно прибегать к колодезной кладке. Отсутствие возможности вентилировать ее означает, что придется применять устойчивые к влаге решения. Утепляющая штукатурка играет только вспомогательную роль, в дополнение к ней обязательно нужно делать подложку из покрытой грунтовкой сетки.

Полезные советы от профи

Не стоит игнорировать преимущества оштукатуривания утепленной стены. Да, это более трудоемко и грязно, чем отделка сухими блоками, но позволяет сочетать отделку и дополнительное сбережение тепла. Проницаемость стенного пирога для водяных паров должна плавно увеличиваться от внутренней поверхности наружу; любое другое соотношение слоев в корне неправильно. Вермикулит чрезвычайно дорог, но обойти эту трудность несложно – требуется только применять его не автономно, а в составе теплой штукатурки. Подобное решение, благодаря своей отменной проницаемости для пара, может использоваться практически везде.

О тонкостях выбора утеплителя для стен дома смотрите в видео ниже.

Изоляционные материалы — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 21 февраля 2016; проверки требуют 8 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 21 февраля 2016; проверки требуют 8 правок.

Электроизоляционные материалы (диэлектрические материа́лы, диэлектрики, изоляторы) — конструкционные материалы и среды, служащие для изолирования проводников, то есть их электрического разъединения и защиты от внешних воздействий. Основное свойство этих материалов — создание препятствия протеканию электрического тока проводимости (постоянного и переменного).

Применение[править | править код]

Электроизоляционные материалы применяются в электротехнических, радиотехнических и электронных приборах и устройствах.

Свойства[править | править код]

У электроизоляционных материалов желательны большое удельное объёмное сопротивление, высокое пробивное напряжение, малый тангенс диэлектрических потерь и малая диэлектрическая проницаемость . Важно, чтобы вышеперечисленные параметры были стабильны во времени и по температуре, а иногда и по частоте электрического поля.

Электроизоляционные материалы можно подразделить:

по агрегатному состоянию:

  • Газообразные
  • Жидкие
  • Твёрдые

происхождению:

  • Природные неорганические
  • Искусственные неорганические
  • Естественные органические
  • Синтетические органические

Газообразные. У всех газообразных электроизоляционных материалов диэлектрическая проницаемость близка к 1 и тангенс диэлектрических потерь так же мал, зато мало и напряжение пробоя. Чаще всего в качестве газообразного изолятора используют воздух, однако в последнее время всё большее применение находит элегаз (гексафторид серы, SF6), обладающий почти втрое бо́льшим напряжением пробоя и значительно более высокой дугогасительной способностью. Иногда для изготовления электроизоляционных материалов применяют сочетание газообразных и органических материалов.

Жидкие — чаще всего используют в трансформаторах, выключателях, кабелях, вводах для электрической изоляции и в конденсаторах. Причём в трансформаторах эти диэлектрики являются одновременно и охлаждающими жидкостями, а в выключателях − и как дугогасящая среда ( см. Масляный выключатель. В качестве жидких диэлектрических материалов прежде всего используется трансформаторное масло ( см. Масло ), конденсаторное масло, касторовое масло, синтетические жидкости ( совтол ).

Природные неорганические — наиболее распространённый материал слюда, она обладает гибкостью при сохранении прочности, хорошо расщепляется, что позволяет получить тонкие пластины. Химически стойка и нагревостойка. В качестве электроизоляционных материалов используют мусковит и флогопит, однако мусковит всё же лучше.

Искусственные неорганические: хорошим сопротивлением изоляции обладают малощелочные стёкла, стекловолокно, ситалл, но основным электроизоляционным материалом всё же является фарфор (полевошпатовая керамика). Эта керамика широко используется для изоляторов токонесущих проводов высокого напряжения, проходных изоляторов, бушингов и т. д. Однако из-за высокого тангенса диэлектрических потерь не годится для высокочастотных изоляторов. Для других более узких задач используется керамика — форстеритовая, глинозёмистая, кордиеритовая и т. д.

Естественные органические: в последнее время в связи с расширением производства синтетических электроизоляционных материалов их применение сокращается. Выделить можно следующие — целлюлоза, парафин, пек, каучук, янтарь и другие природные смолы, из жидких — касторовое масло.

Синтетические органические: большая часть данного материала приходится на долю высокомолекулярных химических соединений — пластмасс, а т.ж. эластомеров ( см.Эластомеры ). Существуют т.ж. синтетические диэлектрические жидкости ( см. Совтол ).

Классификация по нагревостойкости[править | править код]

Хусаинова З.Г. Электроизоляционные материалы, М. 1975

Теплопроводность — Википедия

Теплопрово́дность — способность материальных тел проводить энергию (теплоту) от более нагретых частей тела к менее нагретым частям тела путём хаотического движения частиц тела (атомов, молекул, электронов и т. п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества.

Теплопроводностью называется также количественная характеристика способности тела проводить тепло. В сравнении тепловых цепей с электрическими это аналог проводимости.

Количественно способность вещества проводить тепло характеризуется коэффициентом теплопроводности. Эта характеристика равна количеству теплоты, проходящему через однородный образец материала единичной длины и единичной площади за единицу времени при единичной разнице температур (1 К). В Международной системе единиц (СИ) единицей измерения коэффициента теплопроводности является Вт/(м·K).

Исторически считалось, что передача тепловой энергии связана с перетеканием гипотетического теплорода от одного тела к другому. Однако с развитием молекулярно-кинетической теории явление теплопроводности получило своё объяснение на основе взаимодействия частиц вещества. Молекулы в более нагретых частях тела движутся быстрее и передают энергию посредством столкновений медленным частицам в более холодных частях тела.

В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:

q→=−ϰgrad(T),{\displaystyle {\vec {q}}=-\varkappa \,\mathrm {grad} (T),}

где q→{\displaystyle {\vec {q}}} — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси, ϰ{\displaystyle \varkappa } — коэффициент теплопроводности (удельная теплопроводность), T{\displaystyle T} — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad(T){\displaystyle \mathrm {grad} (T)} (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье.[1]

В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):

P=−ϰSΔTl,{\displaystyle P=-\varkappa {\frac {S\Delta T}{l}},} [Вт/(м·К) · (м2·К)/м = Вт/(м·К) · (м·К) = Вт]

где P{\displaystyle P} — полная мощность тепловых потерь, S{\displaystyle S} — площадь сечения параллелепипеда, ΔT{\displaystyle \Delta T} — перепад температур граней, l{\displaystyle l} — длина параллелепипеда, то есть расстояние между гранями.

Связь с электропроводностью[править | править код]

Связь коэффициента теплопроводности ϰ{\displaystyle \varkappa } с удельной электрической проводимостью σ{\displaystyle \sigma } в металлах устанавливает закон Видемана — Франца:

ϰσ=π23(ke)2T,{\displaystyle {\frac {\varkappa }{\sigma }}={\frac {\pi ^{2}}{3}}\left({\frac {k}{e}}\right)^{2}T,}
где k{\displaystyle k} — постоянная Больцмана,
e{\displaystyle e} — заряд электрона,
T{\displaystyle T} — абсолютная температура.

Коэффициент теплопроводности газов[править | править код]

В газах коэффициент теплопроводности может быть найден по приближённой формуле[2]

ϰ∼13ρcvλv¯,{\displaystyle \varkappa \sim {\frac {1}{3}}\rho c_{v}\lambda {\bar {v}},}

где ρ{\displaystyle \rho } — плотность газа, cv{\displaystyle c_{v}} — удельная теплоёмкость при постоянном объёме, λ{\displaystyle \lambda } — средняя длина свободного пробега молекул газа, v¯{\displaystyle {\bar {v}}} — средняя тепловая скорость. Эта же формула может быть записана как[3]

ϰ=ik3π3/2d2RTμ,{\displaystyle \varkappa ={\frac {ik}{3\pi ^{3/2}d^{2}}}{\sqrt {\frac {RT}{\mu }}},}

где i{\displaystyle i} — сумма поступательных и вращательных степеней свободы молекул (для двухатомного газа i=5{\displaystyle i=5}, для одноатомного i=3{\displaystyle i=3}), k{\displaystyle k} — постоянная Больцмана, μ{\displaystyle \mu } — молярная масса, T{\displaystyle T} — абсолютная температура, d{\displaystyle d} — эффективный (газокинетический) диаметр молекул, R{\displaystyle R} — универсальная газовая постоянная. Из формулы видно, что наименьшей теплопроводностью обладают тяжелые одноатомные (инертные) газы, наибольшей — легкие многоатомные (что подтверждается практикой, максимальная теплопроводность из всех газов — у водорода, минимальная — у радона, из нерадиоактивных газов — у ксенона).

Теплопроводность в сильно разреженных газах[править | править код]

Приведённое выше выражение для коэффициента теплопроводности в газах не зависит от давления. Однако если газ сильно разрежен, то длина свободного пробега определяется не столкновениями молекул друг с другом, а их столкновениями со стенками сосуда. Состояние газа, при котором длина свободного пробега молекул ограничивается размерами сосуда называют высоким вакуумом. При высоком вакууме теплопроводность убывает пропорционально плотности вещества (то есть пропорциональна давлению в системе): ϰ∼13ρcvlv¯∝P{\displaystyle \varkappa \sim {\frac {1}{3}}\rho c_{v}l{\bar {v}}\propto P}, где l{\displaystyle l} — размер сосуда, P{\displaystyle P} — давление.

Таким образом коэффициент теплопроводности вакуума тем ближе к нулю, чем глубже вакуум. Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее, энергия в вакууме передаётся с помощью излучения. Поэтому, например, для уменьшения теплопотерь стенки термоса делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.

Следует отметить, что закон Фурье не учитывает инерционность процесса теплопроводности, то есть в данной модели изменение температуры в какой-то точке мгновенно распространяется на всё тело. Закон Фурье неприменим для описания высокочастотных процессов (и, соответственно, процессов, чьё разложение в ряд Фурье имеет значительные высокочастотные гармоники). Примерами таких процессов являются распространение ультразвука, ударные волны и т. п. Инерционность в уравнения переноса первым ввел Максвелл[4], а в 1948 году Каттанео был предложен вариант закона Фурье с релаксационным членом:[5]

τ∂q∂t=−(q+ϰ∇T).{\displaystyle \tau {\frac {\partial \mathbf {q} }{\partial t}}=-\left(\mathbf {q} +\varkappa \,\nabla T\right).}

Если время релаксации τ{\displaystyle \tau } пренебрежимо мало, то это уравнение переходит в закон Фурье.

Коэффициенты теплопроводности различных веществ[править | править код]

\tau
МатериалТеплопроводность, Вт/(м·K)
Графен4840 ± 440 — 5300 ± 480
Алмаз1001—2600
Графит278,4—2435
Арсенид бора[en]200—2000
Карбид кремния490
Серебро430
Медь401
Оксид бериллия370
Золото320
Алюминий202—236
Нитрид алюминия200
Нитрид бора180
Кремний150
Латунь97—111
Хром107
Железо92
Платина70
Олово67
Оксид цинка54
Сталь нелегированная47—58
Свинец35,3
Сталь нержавеющая (аустенитная) [6]15
Кварц8
Термопасты высокого качества5—12 (на основе соединений углерода)
Гранит2,4
Бетон сплошной1,75
Бетон на гравии или щебне из природного камня1,51
Базальт1,3
Стекло1—1,15
Термопаста КПТ-80,7
Бетон на песке0,7
Вода при нормальных условиях0,6
Кирпич строительный0,2—0,7
Силиконовое масло0,16
Пенобетон0,05—0,3
Газобетон0,1—0,3
Древесина0,15
Нефтяные масла0,12
Свежий снег0,10—0,15
Пенополистирол (горючесть Г1)0,038—0,052
Экструдированный пенополистирол (горючесть Г3 и Г4)0,029—0,032
Стекловата0,032—0,041
Каменная вата0,034—0,039
Воздух (300 K, 100 кПа)0,022
Аэрогель0,017
Аргон (273—320 K, 100 кПа)0,017
Аргон (240—273 K, 100 кПа)0,015
Вакуум (абсолютный)0 (строго)

Также нужно учитывать передачу тепла из-за конвекции молекул и излучения. Например, при полной нетеплопроводности вакуума, тепловая энергия передаётся излучением (Солнце, инфракрасные теплогенераторы). В газах и жидкостях происходит перемешивание разнотемпературных слоёв естественным путём или искусственно (примеры принудительного перемешивания — фены, естественного — электрочайники). Также в конденсированных средах возможно «перепрыгивание» фононов из одного твердого тела в другое через субмикронные зазоры, что способствует распространению звуковых волн и тепловой энергии, даже если зазоры представляют собой идеальный вакуум.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *