Теплопроводность кирпича, сравнение кирпича по теплопроводности
Рассмотрена теплопроводность кирпича различных видов (силикатного, керамического, облицовочного, огнеупорного). Выполнено сравнение кирпича по теплопроводности, представлены коэффициенты теплопроводности огнеупорного кирпича при различной температуре — от 20 до 1700°С.
Теплопроводность кирпича существенно зависит от его плотности и конфигурации пустот. Кирпичи с меньшей плотностью имеют теплопроводность ниже, чем с высокой. Например, пеношамотный, диатомитовый и изоляционный кирпичи с плотностью 500…600 кг/м3 обладают низким значением коэффициента теплопроводности, который находится в диапазоне 0,1…0,14 Вт/(м·град).
Кирпич в зависимости от состава можно разделить на два основных типа: керамический (или красный) и силикатный (или белый). Значение коэффициента теплопроводности кирпича указанных типов может существенно отличатся.
Керамический кирпич. Производится из высококачественной красной глины, составляющей около 85-95% его состава, а также других компонентов. Такой кирпич изготавливают путем формовки, сушки и обжига, при температуре около 1000 градусов Цельсия. Теплопроводность керамического кирпича различной плотности составляет величину 0,4…0,9 Вт/(м·град).
По сфере применения керамический кирпич подразделяется на рядовой строительный, огнеупорный и лицевой облицовочный. Лицевой декоративный (облицовочный) кирпич имеет ровную поверхность и однородный цвет и применяется для облицовки зданий снаружи. Теплопроводность облицовочного кирпича равна 0,37…0,93 Вт/(м·град).
Силикатный кирпич. Изготавливается из очищенного песка и отличается от керамического составом, цветом и теплопроводностью. Теплопроводность силикатного кирпича немного выше и находится в интервале от 0,4 до 1,3 Вт/(м·град).
Кирпич | Плотность, кг/м3 | Теплопроводность, Вт/(м·град) |
---|---|---|
Пеношамотный | 600 | 0,1 |
Диатомитовый | 550 | 0,12 |
Изоляционный | 500 | 0,14 |
Кремнеземный | — | 0,15 |
Трепельный | 700…1300 | 0,27 |
Облицовочный | 1200…1800 | 0,37…0,93 |
Силикатный щелевой | — | 0,4 |
Керамический красный пористый | 1500 | 0,44 |
Керамический пустотелый | — | 0,44…0,47 |
Силикатный | 1000…2200 | 0,5…1,3 |
Шлаковый | 1100…1400 | 0,6 |
Керамический красный плотный | 1400…2600 | 0,67…0,8 |
Силикатный с тех. пустотами | — | 0,7 |
Клинкерный полнотелый | 1800…2200 | 0,8…1,6 |
Шамотный | 1850 | 0,85 |
Динасовый | 1900…2200 | 0,9…0,94 |
Хромитовый | 3000…4200 | 1,21…1,29 |
Хромомагнезитовый | 2750…2850 | 1,95 |
Термостойкий хромомагнезитовый | 2700…3800 | 4,1 |
Магнезитовый | 2600…3200 | 4,7…5,1 |
Карборундовый | 1000…1300 | 11…18 |
Теплопроводность кирпича также зависит от его структуры и формы:
- Пустотелый кирпич — выполнен с пустотами, сквозными или глухими и имеет меньшую теплопроводность в сравнении с полнотелым изделием. Теплопроводность пустотелого кирпича составляет от 0,4 до 0,7 Вт/(м·град).
- Полнотелый — используется, как правило, при основном строительстве несущих стен и конструкций и имеет большую плотность. Полнотелый силикатный и керамический кирпич в 1,5-2 раза лучше проводит тепло, чем пустотелый.
Печной или огнеупорный кирпич. Изготавливается для эксплуатации в агрессивной среде, применяется для кладки печей, каминов или теплоизоляции помещений, которые находятся под воздействием высоких температур. Огнеупорный кирпич обладает хорошей жаростойкостью и может применяться при температуре до 1700°С.
Теплопроводность огнеупорного кирпича при высоких температурах увеличивается и может достигать значения 6,5…7,5 Вт/(м·град). Более низкой теплопроводностью в сравнении с другими огнеупорами отличается пеношамотный и диатомитовый кирпич. Теплопроводность такого кирпича при максимальной температуре применения (850…1300°С) составляет всего 0,25…0,3 Вт/(м·град). Следует отметить, что теплопроводность шамотного кирпича, который традиционно применяется для кладки печей, — выше и равна 1,44 Вт/(м·град) при 1000°С.
Кирпич | Плотность, кг/м3 | Теплопроводность, Вт/(м·град) при температуре, °С | ||||||
---|---|---|---|---|---|---|---|---|
20 | 100 | 300 | 500 | 800 | 1000 | 1700 | ||
Диатомитовый | 550 | 0,12 | 0,14 | 0,18 | 0,23 | 0,3 | — | — |
Динасовый | 1900 | 0,91 | 0,97 | 1,11 | 1,25 | 1,46 | 1,6 | 2,1 |
Магнезитовый | 2700 | 5,1 | 5,15 | 5,45 | 5,75 | 6,2 | 6,5 | 7,55 |
Хромитовый | 3000 | 1,21 | 1,24 | 1,31 | 1,38 | 1,48 | 1,55 | 1,8 |
Пеношамотный | 600 | 0,1 | 0,11 | 0,14 | 0,17 | 0,22 | 0,25 | — |
Шамотный | 1850 | 0,85 | 0,9 | 1,02 | 1,14 | 1,32 | 1,44 |
Источники:
- Физические величины. Справочник. А. П. Бабичев, Н. А. Бабушкина и др.; под ред. И. С. Григорьева — М.: Энергоатомиздат, 1991 — 1232 с.
- В. Блази. Справочник проектировщика. Строительная физика. М.: Техносфера, 2004.
- Таблицы физических величин. Справочник. Под ред. акад. И. К. Кикоина. М.: Атомиздат, 1976. — 1008 с. строительной физики, 1969 — 142 с.
- Михеев М. А., Михеева И. М. Основы теплопередачи. М.: Энергия, 1977 — 344 с.
- Казанцев Е. И. Промышленные печи. Справочное руководство для расчетов и проектирования.
- Х. Уонг. Основные формулы и данные по теплообмену для инженеров. Справочник. М.: Атомиздат. 1979 — 212 с.
- Чиркин В. С. Теплофизические свойства материалов ядерной техники. Справочник.
Кирпич: шамотный Vs керамический. — Нет судьбы кроме той, что мы сами творим — LiveJournal
Вокруг вопроса применения шамотного и керамического кирпича в печном деле ходит очень много разных споров, слухов, домыслов и легенд. Например, часто встречается мнение, что шамотный кирпич радиоактивный, что его использование вредно для здоровья.Издавна принято, что печь кладется из керамического кирпича, а топка футеруется шамотным. Сейчас же можно встретить печи, камины, барбекю полностью сделанные из шамотного кирпича, да что уж таить — сам использую именно шамотный кирпич в работе.
Давайте попробуем все-таки разобраться, что здесь к чему, сравнить эти 2 вида кирпича и определить их области применения.
Для начала несколько теоретических моментов.
Теплопроводность — способность материала передавать через свою толщу тепловой поток, возникающий вследствие разности температур на противоположных поверхностях. Теплопроводность характеризуется количеством теплоты (Дж), проходящей в течение 1 ч через образец материала толщиной 1 м, площадью 1 м2, при разности температур на противоположных плоскопараллельных поверхностях в 1 К.
Теплоемкость — способность материала при нагревании поглощать теплоту. Теплоемкость определяется отношением количества теплоты, сообщаемого телу, к соответствующему изменению температуры
Пористость — степень заполнения объема материала порами, измеряется в %
Плотность кирпича определяется массой кирпича на единицу его объема
Морозостойкость — способность материала выдерживать попеременное замораживание и оттаивание в водонасыщенном состоянии без признаков разрушения
Характеристика | Шамотный кирпич | Керамический кирпич |
Плотность кг/м. куб. | 1910 | 1950-2050 |
Морозостойкость | 15-50 | 15-75 |
Пористость, % | 24-30 | 8 |
Теплоемкость, кДж/кг С | 1,04 | 0,9 |
Теплопроводность, Вт/м С | 0,84 | 0,5-0,7 |
Коэф. линейного расширения, а.10+6, I/град С | 5,3 | 3-5 |
А теперь давайте попробуем порассуждать о возможности применения шамотного кирпича.
1. Шамотный кирпич будет быстрее прогреваться и стенки кирпича будут более горячими, но при этом остывает он по времени почти столько же,сколько и керамический. В подтверждение этому опыты Евгения Колчина. Это очень удобно, например, в облицовках каминных топок.
2. Сам по себе шамотный кирпич имеет правильную геометрическую форму где любая из 6 граней может быть лицевой(точнее 5 — ложок с клеймом не подойдет) — с этим преимуществом не может поспорить керамический кирпич(там их всего 3). Данный факт позволяет работать почти без брака.
Так же наличие шамотных блоков (ШБ 94, ШБ 96) в некоторых моментах упрощают работу и увеличивают возможность использования шамота (полки, декоративные элементы)
3. Давайте обратимся к Европейскому опыту. Дополнительные теплонакопительные элементы(включая дополнительные дымообороты) для Brunner, Jotul, Schmid, Olsberg делают из шамота. Немецкая компания Wolfshoeher Tonwerke выпускает шамотные элементы для дымооборотов и теплонакопительных печей. Мало кто обращает внимание, но даже есть специальный класс — печные топки: их можно подключать только через систему дымооборотов.
4. Конечно, коэффициент расширения у шамотного и керамического кирпича разный, потому перевязывать их настоятельно не рекомендуется. Это еще раз подтвердил опыт Евгения Колчина.
5. Очень часто бытует мнение, что шамотный кирпич при нагревании выделяет вредные вещества или вообще радиоактивен. Последнее еще в теории(и только в теории!) как-то возможно, так как все зависит от места добычи глины, но вот в первое верится с трудом. Скорее всего, причина возникновения слуха о выделении вредных веществ в следующем. Шамотный кирпич — один из видов огнеупорных материалов(подгруппы алюмосиликатных огнеупоров: полукислые, шамотные и высокоглиноземистые; а есть еще динасовые, муллитовые и др. огнеупоры), а их очень много, изготавливаются они разным способом. Возможно, что при нагревании некоторых из них и выделение вредных веществ, но это не относится к шамотному кирпичу, так как он предназначен для бытового использования.
6. Еще одним недостатком шамотного кирпича можно назвать его меньшую, по сравнению с керамическим кирпичом, морозостойкость. Многи скажут, что для барбекю он не подойдет. Я не так давно работаю печником, но то, что было сделано на улице мной 3-5 лет назад бес признаков разрушения. Да и всегда можно защитить шамотный кирпич лаками или тем же жидким стеклом
Кирпич огнеупорный теплопроводность — Справочник химика 21
Задача VI. 4. Стенка печи состоит из слоя строительного и слоя огнеупорного кирпича равной толщины 6i = 62 = 0,25 м. Определить потери тепла в окружающую среду, если температура внутренней поверхности стенки /вн = 1000° С, а ее наружной поверхности tu = 80° С. Коэффициенты теплопроводности [в вт)[м-град)] строительного и огнеупорного кирпича линейно зависят от температуры [c.175]К теплоизоляционным материалам относятся легковесные огнеупоры, диатомовый кирпич, минеральная вата, асбест, котельный или доменный гранулированный шлак и др. Чаще для тепловой изоляции печей применяют диатомовый кирпич. Его изготовляют из смеси трепела или диатомита с древесными опилками. При обжиге-онилки выгорают, кирпич получается пористым, следовательно, менее теплопроводным. Диатомовые изделия могут применяться в местах с температурой не выше 900 °С. В местах, где температура не превышает 600 С, применяют минеральную вату. В качестве прокладки между металлическим кожухом и огнеупорной кладкой для уменьшения газопроницаемости и как теплоизоляционный материал применяют минеральную вату. В качестве засыпной изоляции для сводов и стен печей используют также диатомовый и трепельный порошок, асбозурит (смесь молотого диатомита с асбестом), просеянный котельный шлак, а так ке гранулированный доменный шлак. Основные свойства теплоизоляционных материалов и их применение приведены в табл. 40.
Коэффициент теплопроводности огнеупорного бетона, красного и огнеупорного кирпича [c.70]
Электрические печи сопротивления косвенного действия получили большое распространение. Б них тепло выделяется при прохождении электрического тока по специальным нагревательным элементам выделяющееся тепло передается материалу лучеиспускат ем, теплопроводностью и конвекцией. В таких печах осуществляется нагревание до температур 1000 — 1100° С. Схема такой печи показана на рис. 7-10. Футеровка печи 2 выполнена из огнеупорного кирпича. В пазах футеровки уложены спиральные нагревательные элементы 4, к которым подводится ток через электрошины 5. Тепло, выделяющееся при прохожденпп электрического тока через спиральные нагревательные элементы, передается обогреваемому аппарату 7 лучеиспусканием и конвекцией. Тепловая изоляция 3 уменьшает потери тепла в окружающую среду.
Огнеупорные материалы, применяемые для кладки лещади, должны быть устойчивы против воздействия чугуна и щлака при высокой температуре, иметь минимальную пористость, а также высокую точность форм и размеров для выполнения кладки с минимальной толщиной швов без предварительной обработки кирпича. Для кладки лещади применяют высокоглиноземистые изделия (ГОСТ 10381—75) и шамотный доменный кирпич (ГОСТ 1598—75) в сочетании с графитированными (ТУ 48-01-31-71), а также углеродистыми (ТУ 48-12-18-73) блоками. Графитированные и углеродистые блоки обладают высокой теплопроводностью. Их назначение — интенсивно отводить тепло от центральной (кирпичной) части лещади к холодильникам воздушного и водяного охлаждения.
Влияние алюминиевой краски на теплопередачу через стенку удивительно мало. Светлая поверхность холодной стороны стенки, излучая меньше тепла при той же температуре, действует как изолятор и повышает температуры шамотного и теплоизоляционного кирпича. Коэффициент теплопроводности обоих огнеупорных материалов повышается с температурой, и это приводит к тому, что через светлую стенку проходит почти столько же тепла, сколько через неокрашенную. Однако наличие краски снижает утечку газа через стенку. [c.126]
Назначение тепловой изоляции в электрических печах — снижение тепловых потерь через стенки печи. Поэтому основное требование, предъявляемое к теплоизоляционным материалам, — малый коэффициент теплопроводности при достаточной огнеупорности. Теплоизоляционные материалы представляют собой рыхлые легкие массы или пористые изделия (кирпичи, блоки, плиты). [c.19]
Однако большинство теплоизоляционных материалов, обладающих высокой изоляционной способностью, имеют сравнительно слабую сопротивляемость действию высоких температур. Такие материалы не всегда годятся для непосредственного расположения за слоем огнеупорного кирпича в областях высокой температуры. В этих случаях применяется двухслойная теплоизоляция. Первый к огнеупору слой должен быть из более теплопроводной, но зато стойкой изоляции, а последующий слой — из малотеплопроводной, но термически более слабой изоляции. [c.86]
Динасовый кирпич имеет более высокую огнеупорность, чем шамотный. Температура начала деформации под нагрузкой (2 кг см ) динасового кирпича составляет 1600—1650° С, шамотного 1300—1350° С. Теплопроводность динасового кирпича также выше, чем шамотного, что позволяет увеличивать производительность печей. Однако динас обладает меньшей устойчивостью в зоне низких температур при резких колебаниях температуры. Это обстоятельство требует особой осторожности при изменении температуры кладки. [c.98]
Задача VI. 22. Стенка печи состоит из слоя огнеупорного кирпича теплопроводностью Хот = 0,7 вт/(м-град) и слоя строительного кирпича Я-с = 1,52 вт (м-град). Определить толщину обоих слоев, необходимую для того, чтобы температура на внутренней и наружной сторонах кладки из строительного кирпича не превышала соответственно 400 и 100° С. Температура печных газов 1100°С коэффициент теплоотдачи от них аг=15 вт (м -град). Температура окружающего воздуха 0°С коэффициент теплоотдачи к воздуху ав = 13,4 вт (м -град). [c.178]
Теплоизоляционные огнеупорные материалы (легковесный шамотный кирпич, огнеупорный теплоизоляционный кирпич) применяют при всех температурах, встречающихся в промышленных печах . До некоторой степени коэффициент теплопроводности этих материалов обратно пропорционален их пористости и, значит, зависит от объемной плотности кирпича. Однако влияние пористости нельзя представить в виде строгой функции, поскольку имеет значение не суммарный объем пор, а число пор в данном объеме. Это положение объясняется двумя причинами [c.484]
Термоизоляционную футеровку аппаратов выполняют из огнеупорного кирпича или асбоцементной массы. Наиболее распространена термоизоляция асбоцементом благодаря его достаточной механической прочности, незначительной теплопроводности и невысокой стоимости. После нанесения термоизоляции и футеровки аппарата составляют соответствующий акт. [c.344]
Но даже в тех случаях, когда топливо сгорает полностью, часть выделенного тепла уходит не на нагрев газов, а на наружное охлаждение топочного устройства через его теплопроводящие стенки. Эта потеря тепла в какой-то мере всегда имеет место и в так называемых горячих топках, в которых стенки сооружены из мало теплопроводного материала в виде огнеупорных кирпичей изнутри и хорошей тепловой изоляции снаружи. [c.102]
Теплопроводность кирпича — основные критерии
Физические характеристики строительного материала определяют сферу его применения. Теплопроводность кирпича является важным параметром, который принимается в расчет при сооружении фундамента, перекрытий, внешних стен.
Коэффициент теплопроводности кирпичей
В экономике страны строительная отрасль выделяется как наиболее энергоемкая:
- 10% энергии потребляют гражданские объекты;
- 35-45% расходуют сооружения промышленного назначения;
- 50-55% энергопотребления относится к жилым зданиям.
При проектировании зданий важное значение для строительных конструкций имеют теплоизоляция и тепловая защита. От этого во многом зависят человеческие условия труда и жизни, энергоэффективность строящихся объектов.
Возведение сооружений различного назначения нуждается в правильной оценке влажностного, воздушного и теплового режимов.
Это позволяют разработать специальные методики определения теплофизических параметров стройматериалов и готовых конструкций. Эти методики будут разными для отличающихся материалов изделий.
Теплотехнические показатели по техническим и нормативным документам характеризуются коэффициентом теплопроводности (λ). Для кирпича параметр является показателем того, как изделие передает тепло.
Чем выше значение, тем меньше теплоизолирующая способность. При выборе утеплителя для дома значение λ должно быть как можно меньше.

Коэффициент определяют экспериментальным путем. Это физический показатель, который зависит от давления воздуха, температуры, влажности среды и вещества изделия, плотности и структуры последнего.
Существует формула для определения теплопроводности. В соответствии с ней коэффициент λ прямо пропорционален толщине слоя (в метрах) и обратно пропорционален сопротивлению теплопередаче слоя.
Величина, которую получают при расчетах, используются в проектировании, чтобы сопоставить значение проводимости тепла разных материалов.
Для ограждающих конструкций сопротивление теплопередаче (R0) определяется для зданий и сооружений в соответствии с ГОСТ 26254-84. Для термически однородной зоны оно зависит от:
- Сопротивлений передачи тепла наружной и внутренней поверхностей.
- Температуры воздуха снаружи и внутри помещения, взятой как среднее значение измерений за расчетный период.
- От средней фактической плотности потока тепла за период измерений.
Теплопроводность кладки
По ГОСТ 26254 определяют λ для кирпичных и блочных кладок. Для этого действуют следующим образом:
- За время наблюдений определяют показания (средние арифметические) для всех термопар и типломеров.
- Для поверхностей кладок, которые находятся внутри и снаружи зданий и сооружений, вычисляется средневзвешенная температура по результатам испытаний. Принимается в расчет площадь растворных швов горизонтального и вертикального участков, а также площадь тычкового и ложкового участков.
- Определяют для кладки термическое сопротивление.
- Коэффициент теплопроводности кладки вычисляется по значению термического сопротивления.
Расчет
Теплопроводность кладки прямо пропорциональна ее толщине и обратно пропорциональна термическому сопротивлению.
После проведения испытаний и установления точных значений сопротивления теплопередачи нетрудно рассчитать величину теплопроводности стены, состоящий из несколько слоев.
Для этого нужно определить λ для каждого слоя отдельно и суммировать полученные значения.
Уменьшение коэффициента теплоотдачи стены
Существует несколько способов, которые позволяют снизить тепловые потери.
Технологии укладки
Воздушные зазоры делаются в кирпичной кладке для уменьшения накопления влаги в стенах и снижения коэффициента теплоотдачи.
Прослойку воздуха в стенах правильно обеспечивают следующим образом:
- Раствором не заполняют воздушные зазоры толщиной до 10 мм между изделиями начиная с 1 ряда. 1 метр — распространенный шаг между зазорами.
- По типу фасада с вентиляцией зазор воздуха толщиной 25-30 мм оставляют по всей высоте кладки между теплоизолятором и кирпичом. При работе зимой отопительной системы температура в доме будет оставаться постоянной. Свойства стены сохранять тепло обеспечат постоянные воздушные потоки, которые будут проходить по предусмотренным воздушным каналам.
Постоянная циркуляция по каналам воздуха внутри кладки возможна, если она на последнем ряду не закрывается перекрытием из любых стройматериалов или стяжкой из раствора.
Для частного строительства важно, чтобы, не понеся больших расходов, добиться от кирпичной стены существенного снижения коэффициента λ.
Утепление здания
Дополнительная теплоизоляция строительных объектов способствует повышению их энергоэффективности. Утеплитель может располагаться изнутри и снаружи зданий.
Материал теплоизолятора крепится к стенам дюбелями и клеем, скобами и шурупами с использованием обрешетки и без. Полимерные штукатурные и пеновые смеси могут наноситься с применением армирующей сетки.
Для наружного утепления производятся сборные изделия: термоблоки, вентилируемые фасады, закрепляющиеся к стенам с помощью специальных конструкций.
Недостатки теплоизоляции штукатуркой снаружи:
- При частой смене температуры воздуха на границе сред, образуемых элементами утеплителя и стеной, создается зона повышенной влажности. Это важно учитывать для недостаточно толстых слоев штукатурки, сделанной по металлической, стеклотканевой или полимерной сетке.
- На 3-4 году эксплуатации отделка фасада начинает разрушаться. Раствор выдерживает в среднем около 50 циклов смены тепло-холод.
- На здоровье проживающих в доме может плохо влиять поражение конструкций грибком и плесенью.
Разные системы теплоизоляции способны нарушить паропроницаемость конструкции. Это часто вызывает образование между слоями фасада, штукатуркой и утеплителями конденсата. Он снижает срок службы изоляции и отделки, приводит к разложению пенополистиролов с выделением ядовитых веществ.
Что обозначает показатель
Холодная область материала постоянно получает тепло из более теплых частей. Их этот процесс движения тепла осуществляется через электромагнитные взаимодействие на уровне квазичастиц, электронов и атомов.
Физический смысл показателя теплопроводности — какое за единичный интервал времени через единицу площади сечения проходит количество теплоты.
В зависимости от коэффициента теплопроводности ГОСТ 530-2012 разделяет эффективность складки на следующее виды:
- малоэффективная (обыкновенная) — от 0,46 и выше;
- условно-эффективная — 0,36-0,46;
- эффективная — 0,24-0,36;
- повышенная — 0,2-0,24;
- высокая — меньше 0,2.
Исходя из состава для кладочных смесей величину теплопроводности в инженерных расчетах выбирает от 0,47 и выше.
Нужный температурный режим лучше поддерживается при использовании стройматериалов с высокой теплоемкостью. Этот параметр характеризует, сколько нужно количества тепла, чтобы за единицу времени нагреть объект до заданной температуры. Единицами измерения показателя являются Дж/0С, Дж/К.
Свойства различных типов
Разные строительные материалы отличаются способностью проводить тепло, которая зависит от следующих параметров:
- Влажность. 0,6 — значение λ для воды. Влажный насыщенный воздух или капли жидкости замещают сухой воздух в порох утеплителя и стеновых конструкциях при их намокании. Это приводит к росту показателей теплопроводности.
- Плотность. Тепловая энергия лучше передается, если частицы в теле расположены более тесно и в большем количестве. Опытным путем или на основе справочных данных определяется зависимость плотности и теплопроводности материала.
- Пористость. Однородность структуры изделий нарушается из-за наличия в ее составе пор. Заполненный воздухом объем, занятый порами, передает часть энергии теплового потока. Для сухого воздуха принимает значение λ отсечной точки 0,02. Теплопроводность стройматериалов будет меньше, если воздушными порами будет занят больший объем.
- Структура пор. Тепловой поток снижает скорость при наличии в изделиях небольших пор замкнутого характера. Тепловая конвекция будет участвовать в передаче тепла, когда имеются относительно большие сообщающиеся между собой поры.
Красный керамический
Мелкозернистая глина является при производстве керамического кирпича основным компонентом. В готовую продукцию также входят вода, песок и улучшающие начальное качество сырья присадки.
Изделия меньше растрескиваются, когда в их состав входит более эластичный раствор, качество которого модифицируют с помощью пластификаторов.
Для керамического кирпича хорошая морозостойкость является основным достоинством. Он способен выдерживать 250-300 циклов замораживания и оттаивания.
Красный кирпич из керамики российского производства имеет толщину 6,5 см и 25 см в длину. Для двойного толщина составляет 13,8 см, 8,8 см — для полуторного.
У пустотелых и полнотелых изделий будет разная величина объемного веса. Построенная из кирпича конструкции будут характеризоваться теплопроводностью тем ниже, чем более пористый материал был использован при строительстве. Для полнотелого кирпича показатель пустотности не может составлять более 30%.
Чтобы внутри изделия образовались пустоты, используется «шихта» — торф, крошки угля, опилки, солома мелко порубленная. Ее добавляют в массу глины. Пустоты образуются, когда добавки выгорают при спекании глины в печах с 1000°С температурой.
По показателю плотности кирпич делится на 7 категорий — от 2,4 до 0,7. Каждый класс изделия обладает собственной теплопроводностью.
0,6-0,7 — коэффициент теплопроводности для изделий с цельной структурой. Для пустотелых — 0,5-0,25 Вт/м*0С.
Несущие стены не делают из пустотелых материалов, поэтому чаще всего они нуждаются в дополнительном утеплении.
Клинкерный
Этот тип кирпича получают из смеси силикатов и минералов, воды, тугоплавкой измельченной глины, которую обрабатывают после формовки при высокой температуре (до 13000). Для этого используют тоннельные печи.
При соблюдении технологии производства получается продукт без мелкодисперсионных пор с высокой прочностью, натуральных оттенков. Параметры готовых изделий определяются ГОСТ 530-2012.
Клинкерный кирпич чаще всего получается с точной геометрией. Для повышения теплоизоляционных качеств и облегчения веса конечной конструкции он выполняется пустотелым.
Характеристики материала:
- Морозостойкость более 100 циклов.
- Минимальная марка прочности М250.
- 1500 кг/см3 — наименьший показатель плотности.
- Высокая огнестойкость, устойчивость к биологическим угрозам, воздействию ультрафиолета.
- 6% — максимальное водопоглощение.
- Коэффициент теплопроводности — 1,15Вт/м*0С.
Характеристика шамотного
Этот вид кирпича делают из специальной глины — желтого шамота. Получаемые изделия являются жаростойким материалом, который в сложных условиях высоких температур даже под высоким давлением способен сопротивляться деформациям. Длительный контакт с открытым огнем спокойно им переносится.
Оксид алюминия является главным веществом, которое входит в огнеупорную смесь. Он обеспечивает кирпичу устойчивость к агрессивным средам и высокую прочность при механических воздействиях.
Материал делят на 8 групп по показателям пустотности. Максимальное значение — 85%, минимальное — 3%. Чем меньше удельный вес изделия, тем ниже прочностные характеристики.
Изготовленный в соответствии с государственными стандартами стройматериал обладают следующими показателями:
- 7% — водопоглощение;
- высокая устойчивость к кислотам и щелочам;
- 3,7 кг — средний вес;
- 1350°С — рабочая температура, 1750° — максимальная;
- 15-23 Н/мм2 — значение прочности на сжатие;
- 0,84-1,28 Вт/м*0С — коэффициент теплопроводности.
Силикатный
Материал получают под давлением 12 атм. и температуре 200°С автоклавным методом. В его состав входят, кроме модифицирующих добавок, извести, кварцевый песок в соотношении 1 к 9.
Стойкие к щелочи пигменты, которые добавляют в сырье на этапе прессования, помогают сделать цветные варианты изделий.
ГОСТ379-95, 379-2015 определяют требования к силикатному кирпичу. 15-31% составляет показатель пустотности. Вес изделий — от 3,2 до 5,8 кг.
Характеристики плотности:
- 1450 кг/м3 — для пустотелого кирпича марки М150;
- 1700-2100 кг/м3 — для полнотелого М150-200.
Теплопроводность пустотелых силикатных изделий составляет 0,56-0,81 Вт/м*0С, и 0,65-0,88 — для полнотелых.
Какая теплопроводность изделий
Для анализа теплопроводности изделий из кирпича принимается во внимание закон Фурье. Разница температур оказывает влияние на показатели, которые определяет тепловой поток.
Применяемые для отделки фасадов силикатные кирпичи имеют тепловые параметры ниже керамических. Поэтому изделия из силикатных материалов более теплые при одинаковых размерах конструкций.
Изделия из красного пустотелого керамического кирпича имеют коэффициент теплопроводности 0,56.
На показатели готовых зданий сооружений и влияет качество кладки. Важно, чтобы применяемые кладочные растворы были нежирными. Плотность слоя должна быть не больше 1800кг/м3 и минимальной толщины.
Теплотехнические расчеты и требуемая несущая способность определяют то, какая толщина несущей стены будет в здании. Чтобы удовлетворять современным требованиям при реконструкции домов, построенных в советское время, толщину их стен нужно сделать около 1 м. Это не может быть рентабельным, поэтому используют различные системы утепления.
Если утепляющая часть стены и сочетается с каменной, конструкция получается слоистой, то такую укладку называют эффективной. Ее часто применяют в малоэтажном строительстве, для увеличения полезной площади помещений и снижения затрат на материалы.
//www.youtube.com/watch?v=NjQhpwCjYQI
Что влияет на показатели
Теплопроводность стройматериала — способность сквозь свою толщину передавать тепло и стационарные внутренние процессы, происходящие внутри него при этом. Тесный контакт является обязательным условием для передачи теплоты от 1 объекта к другому, поэтому в чистом виде теплопроводность имеют только твердые тела.
На показатель λ оказывает влияние:
- влажность;
- температура;
- пористость;
- формы и структура пор;
- фазовый состав влаги;
- плотность.
Сильно снижает теплопроводность наличие замкнутых и мелких пор. Снижают эффективную теплоизоляцию конвективные потоки воздуха, которые возникают в сообщающихся между собой крупных порах. Ориентация, размер и форма пор важны для теплопередачи.
Входящие в состав материала вещества своей химической природой определяют способность удерживать тепловую энергию. Величина λ тем меньше, чем слабее связаны между собой образующие кристаллическую решетку вещества атомные группы или тяжелые атомы.
Теплопроводность кирпича: что влияет на показатели
Качество дома оценивается по многим факторам, одним из которых является способность удерживать тепло. Теплопроводность кирпича влияет на этот показатель. Поэтому перед началом строительства или утепления здания учитывается это свойство стройматериала. Популярным и доступным средством для возведения стен является керамический кирпич. Так как большинство его видов обладают слабой теплоизоляцией, то этот недостаток компенсируется с помощью термоизоляционных конструкций.
Что обозначает показатель?
Каждый стройматериал выделяется своей теплопроводностью. Этим показателем характеризуется способность удерживать тепло в доме. У бетона, дерева и кирпича эта характеристика имеет разные значения. Чем ниже значение показателя, тем лучше у него сопротивление теплопередаче. Но следует учитывать, что уровень теплоизоляции увеличивается при уменьшении плотности стройматериала. Это делает блоки более легкими, поэтому при возведении двухэтажного дома лучше выбрать пустотелый материал для уменьшения давления на фундамент дома. Толщина кирпичной кладки меняется в зависимости от теплопроводности стройматериала. Для экономии строительства используется двойной блок. Для оценки теплоизоляционных свойств утеплителя используют коэффициент теплотехнической однородности.
Вернуться к оглавлениюСвойства различных типов блоков
Красный керамический
Пористость увеличивает теплосопротивление стройматериалов, поэтому у полнотелого кирпича теплопроводность выше.

Этот вид стройматериалов является популярным и доступным. Состоит из глины и других добавок. Этими строительными материалами возводится несущая конструкция, облицовываются или утепляются стены старого дома, а также сооружаются заборы и укладывается фундамент. Изделие отличается высокой прочностью и долговечностью. Теплопроводность керамического кирпича зависит от разновидности. Лучшим вариантом для утепления дома является использование пустотелого кирпича. Чем больше степень пустотелости, тем меньше изделие способно проводить тепло. Кирпичная стена может укладываться в один или два ряда. Кроме этого, стройматериал обладает такими свойствами, как:
- прочность;
- морозостойкость;
- огнеупорность;
- звукоизоляция.
Клинкерный
Эта разновидность красного керамического стройматериала чаще всего применяется для облицовочных работ, укладки тротуаров. Это обусловлено его высокой теплопроводностью. Она достигает 1,16 Вт/м°С. Уменьшения этого показателя удается достичь у пустотелых образцов. При строительстве дома из таких блоков необходимо использовать дополнительные методы утепления. Большая плотность изделия придает ему дополнительной влаго- и морозостойкости. Облицовочный кирпич широко используется для декоративной отделки домов снаружи и внутри.
Вернуться к оглавлениюХарактеристика шамотного

Так как этот вид стройматериала характеризуется высокой способностью проводить тепло, его чаще применяют при возведении каминов, печей. Этим обусловлено его название «печной кирпич». В таком случае теплопроводность шамотного кирпича играет решающую роль в выборе материалов для стройки. Подобные свойства помогают экономить энергию для обогрева помещения. Кроме этого, шамотный кирпич обладает такими свойствами, как:
- огнеупорность;
- устойчивость к перепадам температуры;
- высокая теплопроводность;
- легкий вес;
- устойчивость к воздействию щелочей и ряда кислот;
- прочность;
- эстетичность.
Силикатный
Этот вид стройматериала ценится прочностью, экологичностью и звуконепроницаемостью. Но теплопроводность кирпича этого типа не завышена, поэтому помещения из него требуют дополнительного утепления. Силикатные блоки делают из смеси песка и извести с добавлением связующих компонентов, которые прессуются и впоследствии подвергаются обжигу. Самым распространенным является изделия марки М100. Различают рядовой и лицевой силикатный кирпич. Каждый из них имеет свою сферу применения. Кроме этого, материал способен впитывать влагу, что не позволяет использовать его в местах с повышенной влажностью и при строительстве фундамента.
Вернуться к оглавлениюКакая теплопроводность изделий?

От состава, способа изготовления и пустотелости зависят характеристики стройматериалов. Коэффициент теплопроводности кирпича характеризует его способность проводить тепло. Клинкерные изделия отличаются высоким уровнем, а керамические материалы — самым низким в сравнении с другими видами. Характеристика разновидностей изделия указана в таблице.
Вид | Показатель, Вт/м°С | |
---|---|---|
Керамический | Полнотелый | 0,5—0,8 |
Щелевой | 0,34—0,43 | |
Поризованный | 0,22 | |
Клинкерный | 0,8—1,16 | |
Шамотный | 0,6 | |
Силикатный | Полнотелый | 0,7—0,8 |
Пустотелый | 0,4—0,66 |
Что влияет на показатели?
Теплопроводность кладки из кирпича зависит не только от качества изделия, но и от смеси, с помощью которой укладывается конструкция.

Но все же решающую роль в выборе стройматериала играет его характеристика. Теплопроводность красного кирпича отличается в зависимости от таких факторов, как:
- Пустотелость. Чем больше пустот в изделии, тем выше его теплоизоляционные качества.
- Плотность. Высокое значение этого показателя прибавляет стройматериалу прочности, но уменьшает способность удерживать тепло.
- Структура и форма пористости. Большое количество мелких и замкнутых пор снижает теплопроводность материала.
- Состав. Стройматериалы, образованные из тяжелых атомов и атомных групп, снижают теплопроводность.
При выборе стройматериалов руководствуются не только одним свойством удерживать тепло. Учитывается, в каких климатических условиях будет использоваться кирпич и функциональное назначение планируемой конструкции. Для строительства дома лучше подойдет применение двойного пустотелого керамического блока, а для облицовки — лицевого клинкерного кирпича. Преимущество силикатных блоков состоит в невысокой цене, но влаговпитываемость не позволяет его использование в местах с повышенной влажностью. К выбору стройматериалов рекомендуется относиться ответственно, так как от этого зависит качество постройки.
Основные свойства огнеупорных материалов :: Огнеупорные материалы в металлургии
Пригодность тех или иных огнеупоров в каждом отдельном случае оценивается в зависимости от их основных физических и рабочих свойств.
Огнеупорность.
Деформация под нагрузкой при высоких температурах.
Испытания проводят на цилиндрическом образце высотой 50 и диаметром 36 мм при постоянной нагрузке 1,96-105 Па. Результаты испытания представляют в виде графика зависимости изменения высоты образца от температуры. Для характеристики деформации отмечают температуру начала размягчения, когда высота образца уменьшается на 4%, температуру, соответствующую изменению высоты на 40%, и температурный интервал размягчения, представляющий разность этих двух температур.
Постоянство формы и объема.
Термическая стойкость.
Для определения термической стойкости используют образец в форме кирпича. образец нагревают 40 мин при 850°С, затем охлаждают 8—15 мин. Цикл нагрева и охлаждения называется теплосменой. Охлаждение может быть только на воздухе (воздушные теплосмены) или сначала в воде 3 мин, затем на воздухе 5— 10 мин (водяные теплосмены). Нагрев и охлаждение проводятся до тех пор, пока потеря массы образца (из-за откалывания кусков) не достигнет 20%. Термическая стойкость оценивается количеством выдержанных теплосмен.Химическая стойкость.
Кислые огнеупоры устойчивы к кислым шлакам, содержащим большое количество Si02, но разъедаются основными шлаками. Кислым огнеупором является динас. Динас устойчив к действию окислительных и восстановительных газов. Основные огнеупоры устойчивы к действию основных шлаков, но разъедаются кислыми. К ним относятся огнеупоры, содержащие известь, магнезию и щелочные окислы (доломит, магнезит и др.). Нейтральные (промежуточные) огнеупоры, в состав которых входят аморфные окислы, реагируют как с кислыми, так и с основными шлаками, нов значительно меньшей степени, чем кислые и основные. К ним относится хромистый железняк, содержащий в качестве основной составляющей FeO-Cr2O3.
Шлакоустойчивость
Теплопроводность.
В зависимости от целей, для которых используется огнеупор, теплопроводность его должна быть высокой или низкой. Так, материалы, предназначенные для футеровки печей, должны иметь низкую теплопроводность для уменьшения тепловых потерь в окружающее пространство и повышения к. п. д. печи. Однако материалы для изготовления тиглей и муфелей должны иметь высокую теплопроводность, уменьшающую перепад температуры в их стенках.1 — магнезит; 2 — хромомагнезит; 3 — динас; 4—шамот; 5 — пеношамот
Коэффициенты теплопроводности огнеупоров
Наименование огнеупоров | Температурный коэффициент теплопроводности λ Вт/(м-К) | Коэффициент λχΒт/(м*К) при рабочей температуре | Рабочая температура, к |
Кирпич | |||
Шамотный | (0,72+0,0005 t)1,16 | 1,65 | 1620—1720 |
Пеношамотный | (0,24+0,0002 t)1,16 | 0,59 | 1620 |
Легковесный шамот | (0,09+0,000125 t) 1,16 | 0,29 | 1570 |
Динасовый | (0,8+0,0006 t)1,16 | 2,11 | 1970 |
Магнезитовый | (4,0—0,0015 t)1,16 | 1,24 | 1920—1970 |
Хромомагнезитовый | 1970 | ||
Хромитовый | (1,1+0,00035 t) 1,16 | 1,966 | 1920—1970 |
Диатомитовый | (0,097+0,0002 t) 1,16 | 0,309 | 1120 |
Изделия | |||
Силлиманитовые (муллитовые) | (1,45—0,0002 t)1,16 | 1,299 | 1920 |
Корундовые | (1,8+0,0016 t)1,16 | 5,24 | 1920—1970 |
Циркониевые | (1,12+0,00055 t)1,16 | 2,447 | 2020—2070 |
Карбофракс | (18—0,009 t)1,16 | 15,66 | 1670—1770 |
Угольные | (20—0,030 t)1,16 | 16,24 | 2270 |
Графитовые | (140—0,035 t)1,16 | 81,2 | 2270 |
Изоляционные | |||
материалы: | |||
Асбест распушенный | (0,112+0,000167 t)1,16 | 0,2598 | 700 |
Диатомит (вермикулит) | (0,062+0,000225 t) 1,16 | 0,28 | 900—1100 |
Шлаковая вата | (0,05+0,000125 t) 1,16 | 0,167 | 750 |
Теплоемкость
Теплоемкость огнеупоров при различных температурах
Огнеупоры (кирпич) | Химический состав огнеупоров, % | Объемная масса кг/м3 | Теплоемкость кДж/(кг*К) при температуре, К | |||
473 | 873 | 1273 | 1473 | |||
Шамотный | 40Аl2О3, 57SiO2 | 1800 | 0,94 | 1,34 | 1,25 | 1,28 |
Полукислый шамот | 30,0Ai2O3, 63,0SiO2 | 1830 | 0,88 | 1,143 | 1,24 | 1,26 |
Динас | 96Si02 | 2040 | 0,99 | 1,18 | 1,21 | 1,22 |
Магнезитовый | 88,85MgO 9,31Fe2O3 | 2350 | 1,06 | 1,22 | 1,26 | 1,42 |
Угольные электроды | С | 1480—1650 | 1,97 | — | — | — |
Графитированные изделия | C | 1500—1700 | 1,36 | — | — | — |
Пористость.Все огнеупорные изделия пористы. размер пор, их структура и количество весьма разнообразны. Отдельные поры либо соединены между собой и с атмосферой, либо представляют собой замкнутые пространства внутри изделия. Отсюда различают пористость открытую, или кажущуюся, при которой поры сообщаются с атмосферой, пористость закрытую, когда поры не имеют выхода наружу, и пористость истинную, или общую, т. е. суммарную.
Внешний вид и структура.Все огнеупорные изделия делятся на сорта в соответствии с разработанными стандартами. Сорт огнеупорных изделий устанавливают по величине отклонения от установленных размеров, кривизне, отбитости углов, притупленности ребер, наличию отдельных выплавок, ошлакованнсти, просечкам и трещинам. Отклонения в размерах допускаются в пределах норм, указанных в соответствующих стандартах в зависимости от сортности. Кривизна изделий определяется стрелой прогиба. Очевидно, что чем больше будет кривизна, тем менее плотной окажется кладка. Отбитость углов и притупленность ребер также отрицательно влияют на качество кладки. Огнеупорный материал хорошего качества должен иметь в изломе однородное строение без пустот и расслоений. Зерна разных фракций должны равномерно распределяться по поверхности излома, не выпадая и легко не выкрашиваясь. При выборе того или иного материала необходимо руководствоваться основными требованиями к нему в каждом конкретном случае. Так, материал для стенок и свода плавильной печи должен прежде всего обладать высокой механической прочностью. Для откосов печи следует применять огнеупор, более стойкий к действию шлаков, образующихся при данном металлургическом процессе. При выборе огнеупоров следует учитывать их стоимость. Сравнительная стоимость 1 т некоторых огнеупорных кирпичей 1-го сорта по отношению к стоимости динасового кирпича следующая:
Динасовый …. 1,0
Шамотный …. 0,8—0,9
Высокоглиноземнстый…….2,2—8,5
Магнезитовый . . . 1,3—1,5
Магнезитохромитовый…….1,6—1,8
Хромомагнезитовый .1,0—1,3
Карборундовый . .1,4—2,8
При доставке к потребителю правильные транспортировка и хранение готовых огнеупорных изделий обеспечивают их сохранность, хорошее качество кладки и неизменность рабочих характеристик. При перевозке в вагонах огнеупорный кирпич укладывается рядами плотно по всей площади вагона с расклиниванием. Между рядами прокладывается солома или древесная стружка. При перевозке в автомашинах кирпич также плотно укладывается рядами с расклиниванием деревянными клиньями. В последнее время применяется транспортировка кирпича в контейнерах, что улучшает его сохранность и облегчает погрузочно-разгрузочные работы. При транспортировке кирпичей к рабочим местам на транспортерах и лотках они не должны ударяться друг о друга и о детали транспортирующих устройств. Мертели и порошки перевозят в контейнерах, бумажных мешках, или навалом в чистых вагонах.
Огнеупорный кирпич сохраняет тепло, даже когда Вы спите!
Ни одно строительство камина или печи не обходится без использования кирпича. Обыкновенный глиняный кирпич не выдерживает сильного жара — при температуре 1200°С он плавится, а при остывании крошится.
Чтобы избежать быстрого разрушения кладки, контактирующей с открытым огнем, необходим огнеупорный кирпич, способный выдерживать высокие температуры. Его также называют «печным», огнеупорным и шамотным.
Он отличается от привычного для нас кирпича по многим характеристикам, в первую очередь, по степени прочности, теплопроводности и жаростойкости. И здесь все определяется областью его применения. Так, например, для отопления помещения можно использовать в качестве печного кирпич классический красный керамический, поскольку внутренняя температура в печи не превышает, как правило, 700-800°С. Однако следует учесть, что теплоотдача подобного материала значительно ниже, нежели у специализированных аналогов. Поэтому если хотите, чтобы ваша печь прослужила как можно дольше, то лучше сделать футеровку огнеупорным кирпичом. Так же большим плюсом к огнеупорному кирпичу можно добавить его особенность значительно дольше отдавать накопленное тепло. При выборе огнеупорного кирпича большое значение следует придать его внешнему виду. Чтобы его цвет был ровным и отсутствовали трещины. А вот теплопроводность шамотного кирпича значительно выше, что поспособствует обогреву помещения за более короткий промежуток времени. Предлагаем рассмотреть основные подвиды данного рода строительного материала, а также их характеристики.
Уже упоминавшийся огнеупорный шамотный кирпич представляет собой оптимальный вариант для бани или сауны, поскольку он не подвержен влиянию химических соединений и щелочей. Кроме того, шамотный кирпич спокойно переносит резкие перепады температур, что значительно расширяет сферу его применения. Отметим, что данный мат