Геотермальный тепловой насос — Википедия
Материал из Википедии — свободной энциклопедии
Кольца наземного теплообменника теплового насоса (горизонтального типа)Геотермальный тепловой насос — система центрального отопления и/или охлаждения, использующая тепло земли, тип теплового насоса. Земля в геотермальных системах является радиатором в летний период или источником тепла в зимний период. Разница температур грунта используется, чтобы повысить эффективность и снизить эксплуатационные расходы системы обогрева и охлаждения, и может дополняться солнечным отоплением. Геотермальные тепловые насосы используют явление тепловой инерции: температура земли ниже 6 метров примерно равна среднегодовой температуре воздуха в данной местности и слабо изменяется в течение года.
а) замкнутого типа
- горизонтальные
Коллектор размещается кольцами или извилисто в горизонтальных траншеях ниже глубины промерзания грунта (обычно от 1,2 м и более)
Коллектор размещается вертикально в скважины глубиной до 200 м[2]. Этот способ применяется в случаях, когда площадь земельного участка не позволяет разместить контур горизонтально или существует угроза повреждения ландшафта.
Коллектор размещается извилисто либо кольцами в водоёме (озере, пруду, реке) ниже глубины промерзания. Это наиболее дешёвый вариант, но есть требования по минимальной глубине и объёму воды в водоёме для конкретного региона.
- С непосредственным теплообменом (DX — сокр. от англ. direct exchange — «прямой обмен»)
В отличие от предыдущих типов, хладагент компрессором теплового насоса подаётся по медным трубкам, расположенным:
- Вертикально в скважинах длиной 30 м и диаметром 80 мм
- Под углом в скважинах длиной 15 м и диаметром 80 мм
- Горизонтально в грунте ниже глубины промерзания
Циркуляция хладагента компрессором теплового насоса и теплообмен фреона напрямую через стенку медной трубы с более высокими показателями теплопроводности обеспечивает высокую эффективность и надёжность геотермальной отопительной системы. Также использование такой технологии позволяет уменьшить общую длину бурения скважин, уменьшая таким образом стоимость установки DX Direct Exchange Heatpump
б) открытого типа
Подобная система использует в качестве теплообменной жидкости воду, циркулирующую непосредственно через систему геотермального теплового насоса в рамках открытого цикла, то есть вода после прохождения по системе возвращается в землю. Этот вариант возможно реализовать на практике лишь при наличии достаточного количества относительно чистой воды и при условии, что такой способ использования грунтовых вод не запрещён законодательством.
Тепловой насос — это… Что такое Тепловой насос?
Тепловой насос — устройство для переноса тепловой энергии от источника низкопотенциальной тепловой энергии (с низкой температурой) к потребителю (теплоносителю) с более высокой температурой[1]. Термодинамически тепловой насос аналогичен холодильной машине. Однако если в холодильной машине основной целью является производство холода путём отбора теплоты из какого-либо объёма испарителем, а конденсатор осуществляет сброс теплоты в окружающую среду, то в тепловом насосе картина обратная. Конденсатор является теплообменным аппаратом, выделяющим теплоту для потребителя, а испаритель — теплообменным аппаратом, утилизирующим низкопотенциальную теплоту: вторичные энергетические ресурсы и (или) нетрадиционные возобновляемые источники энергии.
Общие сведения
Основу эксплуатируемого сегодня в мире парка теплонасосного оборудования составляют парокомпрессионные тепловые насосы, но применяются также и абсорбционные, электрохимические и термоэлектрические. Эффективность тепловых насосов принято характеризовать величиной безразмерного коэффициента трансформации энергии К тр, определяемого для идеального цикла Карно по следующей формуле:
где — температуры соответственно на выходе и на входе насоса.
где: Тоut-температурный потенциал тепла, отводимого в систему отопления или теплоснабжения, К; Тіn -температурный потенциал источника тепла , К. Коэффициент трансформации теплового насоса, или теплонасосной системы теплоснабжения (ТСТ) Ктр представляет собой отношение полезного тепла, отводимого в систему теплоснабжения потребителю, к энергии, затрачиваемой на работу теплонасосной системы теплоснабжения, и численно равен количеству полезного тепла, получаемого при температурах Тоut и Тin, на единицу энергии, затраченной на привод ТН или ТСТ. Реальный коэффициент трансформации отличается от идеального, описанного формулой (1 1), на величину коэффициента h, учитывающего степень термодинамического совершенства ГТСТ и необратимые потери энергии при реализации цикла. В
В табл.1-1 представлены «средние» значения степени термодинамического совершенства h для некоторых типов компрессоров, используемых в современных теплонасосных системах теплоснабжения.
Таблица 1-1. Эффективность некоторых типов компрессоров, используемых в современных теплонасосных системах теплоснабжения [источник не указан 367 дней]
Мощность, кВт | Тип компрессора | Эффективность (степень термодинамического совершенства) h, доли ед. |
---|---|---|
300−3000 | Открытый центробежный | 0,55-0,75 |
50-500 | Открытый поршневой | 0,5-0,65 |
Полугерметичный | 0,45-0,55 | |
2-25 | Герметичный, с R-22 | 0,35-0,5 |
0,5-3,0 | Герметичный, с R-12 | 0,2-0,35 |
<0,5 | Герметичный | <0,25 |
Как и холодильная машина, тепловой насос потребляет энергию на реализацию термодинамического цикла (привод компрессора). Коэффициент преобразования теплового насоса — отношение теплопроизводительности к электропотреблению — зависит от уровня температур в испарителе и конденсаторе. Температурный уровень теплоснабжения от тепловых насосов в настоящее время может варьироваться от 35 °C до 62 °C . Что позволяет использовать практически любую систему отопления. Экономия энергетических ресурсов достигает 70 %
История
Концепция тепловых насосов была разработана ещё в 1852 году выдающимся британским физиком и инженером Уильямом Томсоном (Лордом Кельвином) и в дальнейшем усовершенствована и детализирована австрийским инженером Петером Риттер фон Риттингером (Peter Ritter von Rittinger). Петера Риттера фон Риттингера считают изобретателем теплового насоса, ведь именно он спроектировал и установил первый известный тепловой насос в 1855 году[4] . Но практическое применение тепловой насос приобрел значительно позже, а точнее в 40-х годах ХХ столетия, когда изобретатель-энтузиаст Роберт Вебер (Robert C. Webber) экспериментировал с морозильной камерой
Эффективность
В процессе работы компрессор потребляет электроэнергию. Соотношение вырабатываемой тепловой энергии и потребляемой электрической называется коэффициентом трансформации (или коэффициентом преобразования теплоты) и служит показателем эффективности теплового насоса. Эта величина зависит от разности уровня температур в испарителе и конденсаторе: чем больше разность, тем меньше эта величина.
По этой причине тепловой насос должен использовать по возможности большее количество источника низкопотенциального тепла, не стремясь добиться его сильного охлаждения. В самом деле, при этом растёт эффективность теплового насоса, поскольку при слабом охлаждении источника тепла не происходит значительного роста разницы температур. По этой причине тепловые насосы делают так, чтобы масса низкотемпературного источника тепла была значительно большей, чем нагреваемая масса. Для этого, также, необходимо увеличивать площади теплообмена, чтобы перепад температур между источником тепла и холодным рабочим телом, а также между горячим рабочим телом и отапливаемой средой был поменьше. Это снижает затраты энергии на отопление, но приводит к росту габаритов и стоимости оборудования.
Проблема привязки теплового насоса к источнику низкопотенциального тепла, имеющего большую массу может быть решена[источник не указан 1318 дней] введением в тепловой насос системы массопереноса, например, системы прокачки воды. Так устроена система центрального отопления Стокгольма.
Условный КПД тепловых насосов
Даже современные парогазотурбинные установки на электростанциях выделяют большое количество тепла, что и используется в когенерации. Тем не менее, при использовании электростанций, которые не генерируют попутное тепло (солнечные батареи, ветряные электростанции, топливные элементы) применение тепловых насосов имеет смысл, так как такое преобразование электрической энергии в тепловую более эффективно, чем использование обычных электронагревательных приборов.
В действительности приходится учитывать накладные расходы по передаче, преобразованию и распределению электроэнергии (то есть услуги электрических сетей). В результате[источник не указан 600 дней] отпускная цена электричества в 3-5 раз превышает его себестоимость, что приводит к финансовой неэффективности использования тепловых насосов по сравнению с газовыми котлами при доступном природном газе. Однако, недоступность углеводородных ресурсов во многих районах приводит к необходимости выбора между обычным преобразованием электрической энергии в тепловую и с помощью теплового насоса, который в данной ситуации имеет свои преимущества.
Типы тепловых насосов
Схема компрессионного теплового насоса.1) конденсатор, 2) дроссель, 3) испаритель, 4) компрессор.
В зависимости от принципа работы тепловые насосы подразделяются на компрессионные и абсорбционные. Компрессионные тепловые насосы всегда приводятся в действие с помощью механической энергии (электроэнергии), в то время как абсорбционные тепловые насосы могут также использовать тепло в качестве источника энергии (с помощью электроэнергии или топлива).
В зависимости от источника отбора тепла тепловые насосы подразделяются на[6] :
1) Геотермальные (используют тепло земли, наземных либо подземных грунтовых вод
а) замкнутого типа
- горизонтальные Горизонтальный геотермальный тепловой насос
Коллектор размещается кольцами или извилисто в горизонтальных траншеях ниже глубины промерзания грунта (обычно от 1,20 м и более)[7]. Такой способ является наиболее экономически эффективным для жилых объектов при условии отсутствия дефицита земельной площади под контур.
Коллектор размещается вертикально в скважины глубиной до 200 м[8]. Этот способ применятся в случаях, когда площадь земельного участка не позволяет разместить контур горизонтально или существует угроза повреждения ландшафта.
Коллектор размещается извилисто либо кольцами в водоеме (озере, пруду, реке) ниже глубины промерзания. Это наиболее дешевый вариант, но есть требования по минимальной глубине и объёму воды в водоеме для конкретного региона.
б) открытого типа
Подобная система использует в качестве теплообменной жидкости воду, циркулирующую непосредственно через систему геотермального теплового насоса в рамках открытого цикла, то есть вода после прохождения по системе возвращается в землю. Этот вариант возможно реализовать на практике лишь при наличии достаточного количества относительно чистой воды и при условии, что такой способ использования грунтовых вод не запрещён законодательством.
2) Воздушные (источником отбора тепла является воздух)
3) Использующие производное (вторичное) тепло (например, тепло трубопровода центрального отопления). Подобный вариант является наиболее целесообразным для промышленных объектов, где есть источники паразитного тепла, которое требует утилизации.
По виду теплоносителя во входном и выходном контурах насосы делят на шесть типов: «грунт—вода», «вода—вода», «воздух—вода», «грунт—воздух», «вода—воздух», «воздух—воздух».
Типы промышленных моделей
Тепловой насос «солевой раствор — вода»[9]По виду теплоносителя во входном и выходном контурах насосы делят на восемь типов: «грунт—вода», «вода—вода», «воздух—вода», «грунт—воздух», «вода—воздух», «воздух—воздух» «фреон—вода», «фреон—воздух» . Почти все вновь выходящие на рынок устройства используют тепло выпускаемого из помещения воздуха. Также фильтруют и увлажняют при необходимости всасываемый извне воздух.
Отбор тепла от воздуха
Эффективность и выбор определённого источника тепловой энергии сильно зависит от климатических условий, особенно, если источником отбора тепла является атмосферный воздух. По сути этот тип более известен в виде кондиционера. В жарких странах таких устройств десятки миллионов. Для северных стран наиболее актуален именно обогрев зимой. Системы «воздух-воздух» используются и зимой при температурах до минус 25 градусов, некоторые модели продолжают работать до −40 градусов. Но их эффективность резко падает. При более сильных морозах нужно дополнительное отопление.
Отбор тепла от горной породы
Скальная порода требует бурения скважины на достаточную глубину (100 −200 метров) или нескольких таких скважин. В скважину опускается U-образный груз с двумя пластиковыми трубками, составляющими контур. Трубки заполняются антифризом. По экологическим соображениям это 30 % раствор этилового спирта. Скважина заполняется грунтовыми водами естественным путём, и вода проводит тепло от камня к теплоносителю. При недостаточной длине скважины или попытке получить от грунта сверхрасчётную мощность, эта вода и даже антифриз могут замёрзнуть что и ограничивает максимальную тепловую мощность таких систем. Именно температура возвращаемого антифриза и служит одним из показателей для схемы автоматики. Ориентировочно на 1 погонный метр скважины приходится 50-60 Вт тепловой мощности. Таким образом, для установки теплового насоса производительностью 10 кВт необходима скважина глубиной около 170 м. Нецелесообразно бурить глубже 200 метров, дешевле сделать несколько скважин меньшей глубины через 10 — 20 метров друг от друга. Даже для маленького дома в 110—120 кв.м. при небольшом энергопотреблении срок окупаемости 10 — 15 лет.[10] Почти все имеющиеся на рынке установки работают и летом, при этом тепло (по сути солнечная энергия) отбирается из помещения и рассеивается в породе или грунтовых водах. В скандинавских странах со скальным грунтом гранит выполняет роль массивного радиатора, получающего тепло летом/днём и рассеивающего его обратно зимой/ночью. Также тепло постоянно приходит из недр Земли и от грунтовых вод.
Отбор тепла от грунта
Самые эффективные но и самые дорогие схемы предусматривают отбор тепла от грунта, чья температура не меняется в течение года уже на глубине нескольких метров, что делает установку практически независимой от погоды. По данным [источник не указан 659 дней] 2006 года в Швеции полмиллиона установок, в Финляндии 50 000, в Норвегии устанавливалось в год 70 000. При использовании в качестве источника тепла энергии грунта трубопровод, в котором циркулирует антифриз, зарывают в землю на 30-50 см ниже уровня промерзания грунта в данном регионе. На практике 0,7 — 1,2 метра[источник не указан 659 дней]. Минимальное рекомендуемое производителями расстояние между трубами коллектора — 1,5 метра, минимум — 1,2. Здесь не требуется бурение, но требуются более обширные земельные работы на большой площади, и трубопровод более подвержен риску повреждения. Эффективность такая же, как при отборе тепла из скважины. Специальной подготовки почвы не требуется. Но желательно использовать участок с влажным грунтом, если же он сухой, контур надо сделать длиннее. Ориентировочное значение тепловой мощности, приходящейся на 1 м трубопровода: в глине — 50-60 Вт, в песке — 30-40 Вт для умеренных широт, на севере значения меньше.[11] Таким образом, для установки теплового насоса производительностью 10 кВт необходим земляной контур длиной 350—450 м, для укладки которого потребуется участок земли площадью около 400 м² (20х20 м). При правильном расчёте контур мало влияет на зелёные насаждения[источник не указан 659 дней].
Непосредственный теплообмен DX
Хладагент подаётся непосредственно к источнику земного тепла по медным трубкам — это обеспечивает высокую эффективность геотермальной отопительной системы.
Файл:DariaWPBody.png Тепловой насос Daria WP использующий технологию DX непосредственного теплообмена[12]Испаритель устанавливают в грунт горизонтально ниже глубины промерзания или в скважины диаметром 40-60 мм пробуренные вертикально либо под уклоном (к примеру 45 град) до глубины 15-30 м. Благодаря такому инженерному решению устройство теплообменного контура производится на площади всего несколько квадратных метров, не требует установки промежуточного теплообменника и дополнительных затрат на работу циркуляционного насоса.
Примерная стоимость отопления современного утеплённого дома площадью 120м2 Калининградская область 2012 год. (Годовое энергопотребление 20 000 кВт*ч)
Тип системы отопления | Цена (Руб/кВт*ч) | Эффективность | Годовые затраты |
---|---|---|---|
Электрические | 3.8 Руб | 100 % | 76 000 Руб |
Природный газ | 1,2 | 80 % | 21 000 Руб |
Диз. топливо | 35 Руб\литр | 80 % | 72 000 Руб |
Пропан | 35 Руб\кг | 80 % | 75 000 Руб |
Воздушный тепловой насос | 3.8 Руб | 260 % | 28 000 Руб |
Класические геотермальные насосы | 3.8 Руб | 350 % | 21 700 Руб |
Геотермальные DX | 3.8 Руб | 400 % | 19 450 Руб |
Геотермальные DX с воздушной системой отопления | 3.8 Руб | 440 % | 17 200 Руб |
Разное
устройство беструбного водоподъёма соединённое с погружным скважинным электронасосом ЭЦВ10-63-110В скважинах диаметром 218—324 мм можно существенно снизить необходимую глубину скважины до 50-70 м, увеличить отбор тепловой энергии минимум до 700 Вт на на 1 пог. м. скважины и обеспечить стабильность круглогодичной эксплуатации(в отличие от схемы Васильева)[13] позволяет применение активного контура первичного преобразователя теплового насоса, размещённого в стволе водозаборной скважины (применяется в скважинах имеющих погружной насос, с устройством беструбного водоподъёма, который создаёт проточность жидкости в стволе скважины, продувая током перекачиваемой жидкости теплообменный контур с хладагентом первичного преобразователя теплового насоса, увеличивая отбор тепла не только от прилегающего массива грунта, но и от перекачиваемой жидкости).
Отбор тепла от водоёма
При использовании в качестве источника тепла близлежащего водоёма контур укладывается на дно. Глубина не менее 2 метров. Коэффициент преобразования энергии тепловым насосом такой же как при отборе тепла от грунта. Ориентировочное значение тепловой мощности на 1 м трубопровода — 30 Вт. Таким образом, для установки теплового насоса производительностью 10 кВт необходимо уложить в озеро контур длиной 300 м. Чтобы трубопровод не всплывал, на 1 пог. м устанавливается около 5 кг груза. Промышленные образцы: 70 — 80 кВт*ч/м в год.[14]
Если тепла из внешнего контура всё же недостаточно для отопления в сильные морозы, практикуется эксплуатация насоса в паре с дополнительным генератором тепла (в таких случаях говорят об использовании бивалентной схемы отопления). Когда уличная температура опускается ниже расчётного уровня (температуры бивалентности), в работу включается второй генератор тепла — чаще всего небольшой электронагреватель.
Преимущества и недостатки
К преимуществам тепловых насосов в первую очередь следует отнести экономичность: для передачи в систему отопления 1 кВт·ч тепловой энергии установке необходимо затратить всего 0,2-0,35 кВт·ч электроэнергии. Так как преобразование тепловой энергии в электрическую на крупных электростанциях происходит с кпд до 50 %, эффективность использования топлива при применении тепловых насосов повышается. Упрощаются требования к системам вентиляции помещений и повышается уровень пожарной безопасности. Все системы функционируют с использованием замкнутых контуров и практически не требуют эксплуатационных затрат, кроме стоимости электроэнергии, необходимой для работы оборудования.
Ещё одним преимуществом тепловых насосов является возможность переключения с режима отопления зимой на режим кондиционирования летом: просто вместо радиаторов к внешнему коллектору подключаются фэн-койлы или системы «холодный потолок».
Тепловой насос надежен, его работой управляет автоматика. В процессе эксплуатации система не нуждается в специальном обслуживании, возможные манипуляции не требуют особых навыков и описаны в инструкции.
Важной особенностью системы является её сугубо индивидуальный характер для каждого потребителя, который заключается в оптимальном выборе стабильного источника низкопотенциальной энергии, расчете коэффициента преобразования, окупаемости и прочего.
Теплонасос компактен (его модуль по размерам не превышает обычный холодильник) и практически бесшумен.
Хотя идея, высказанная лордом Кельвином в 1852 году, была реализована уже спустя четыре года, практическое применение теплонасосы получили только в 30-х годах прошлого века. В западных странах тепловые насосы применяются давно — и в быту, и в промышленности. Сегодня в Японии, например[источник не указан 444 дня], эксплуатируется около 3 миллионов установок, в Швеции около 500 000 домов обогревается тепловыми насосами различных типов.
К недостаткам тепловых насосов, используемых для отопления, следует отнести большую стоимость установленного оборудования.
Перспективы
Для установки теплового насоса необходимы высокие первоначальные затраты: стоимость насоса и монтажа системы составляет $300-1200 на 1 кВт необходимой мощности отопления. Время окупаемости теплонасосов составляет 4-9 лет, при сроке службы по 15-20 лет до капитального ремонта[источник не указан 862 дня].
Существует и альтернативный взгляд на экономическую целесообразность установки теплонасосов. Так, если установка теплонасоса производится на средства, взятые в кредит, экономия от использования теплонасоса может быть меньше, чем стоимость использования кредита. Поэтому массовое использования теплонасосов в частном секторе можно ожидать, если стоимость теплонасосного оборудования будет сопоставима с затратами на установку газового отопления и подключения к газовой сети.
Ещё более многообещающей является система, комбинирующая в единую систему теплоснабжения геотермальный источник и тепловой насос. При этом геотермальный источник может быть как естественного (выход геотермальных вод), так и искусственного происхождения (скважина с закачкой холодной воды в глубокий слой и выходом на поверхность нагретой воды).
Другим возможным применением теплового насоса может стать его комбинирование с существующими системами централизованного теплоснабжения. К потребителю в этом случае может подаваться относительно холодная вода, тепло которой преобразуется тепловым насосом в тепло с потенциалом, достаточным для отопления. Но при этом вследствие меньшей температуры теплоносителя потери на пути к потребителю (пропорциональные разности температуры теплоносителя и окружающей среды) могут быть значительно уменьшены. Также будет уменьшен износ труб центрального отопления, поскольку холодная вода обладает меньшей коррозионной активностью, чем горячая.
Ограничения применимости тепловых насосов
Основным недостатком теплового насоса является обратная зависимость его эффективности от разницы температур между источником теплоты и потребителем. Это накладывает определённые ограничения на использование систем типа «воздух — вода». Реальные значения эффективности современных тепловых насосов составляют порядка СОР=2.0 при температуре источника −20 °C, и порядка СОР=4.0 при температуре источника +7 °C. Это приводит к тому, что для обеспечения заданного температурного режима потребителя при низких температурах воздуха необходимо использовать оборудование со значительной избыточной мощностью, что сопряжено с нерациональным использованием капиталовложений (впрочем, это касается и любых других источников тепловой энергии). Решением этой проблемы является применение так называемой бивалентной схемы отопления, при которой основную (базовую) нагрузку несет тепловой насос, а пиковые нагрузки покрываются вспомогательным источником (газовый или электрокотел). Оптимальная мощность теплонасосной установки составляет 60…70 % от необходимой установленной мощности, что также влияет на закупочную стоимость установки отопления тепловым насосом. В этом случае тепловой насос обеспечивает не менее 95 % потребности потребителя в тепловой энергии за весь отопительный сезон. При такой схеме среднесезонный коэффициент преобразования энергии для климатических условий Центральной Европы равен порядка СОР=3. Коэффициент использования первичного топлива для такой системы легко определить, исходя из того, что КПД тепловых электростанций составляет от 40 % (тепловые электростанции конденсационного типа) до 55 % (парогазовые электростанции). Соответственно, для рассматриваемой теплонасосной установки коэффициент использования первичного топлива лежит в пределах 120 %…165 %, что в 2…3 раза выше, чем соответствующие эксплуатационные характеристики газовых котлов (65 %) или систем центрального отопления (50…60 %). Понятно, что системы, использующие геотермальный источник теплоты или теплоту грунтовых вод, свободны от этого недостатка. Следствием этого же недостатка является необходимость использования низкотемпературных систем отопления (системы поверхностного нагрева типа «теплый пол», воздушные системы отопления с применением фен-койлов и т. п.). Однако это ограничение касается только устаревших радиаторных систем отопления, практически не находящих применения в современных технологиях строительства.
COP
COP — от английского (Coefficient of performance) Коэффициент полезного действия теплового насоса. Представляет собой отношение тепла на выходе «теплового резервуара» к потребляемой мощности. COP был создан для сравнения тепловых насосов по энергоэффективности. Для вычисления COP используется следующая формула:
где
- — тепловая энергия резервуара
- — потребляемая мощность в Ваттах.
Основные схемы отопления с применением тепловых насосов
Стандартные объекты обогрева
- Бассейны
- Дачи, коттеджи
- Квартиры
- Гостиницы, рестораны
- Коттеджные городки
- Офисно-торговые центры
- Производственные помещения
- Аквапарки
- Школы
Примечания
См. также
Тепловой насос — Википедия. Что такое Тепловой насос
Тепловой насос — устройство для переноса тепловой энергии от источника низкопотенциальной тепловой энергии (с низкой температурой) к потребителю (теплоносителю) с более высокой температурой[1]. Термодинамически тепловой насос аналогичен холодильной машине. Однако если в холодильной машине основной целью является производство холода путём отбора теплоты из какого-либо объёма испарителем, а конденсатор осуществляет сброс теплоты в окружающую среду, то в тепловом насосе картина обратная. Конденсатор является теплообменным аппаратом, выделяющим теплоту для потребителя, а испаритель — теплообменным аппаратом, утилизирующим низкопотенциальную теплоту: вторичные энергетические ресурсы и (или) нетрадиционные возобновляемые источники энергии.
По прогнозам Международного энергетического агентства, тепловые насосы будут обеспечивать 10 % потребностей в энергии на отопление в странах ОЭСР к 2020 году и 30 % — к 2050 году[источник не указан 1143 дня]
Общие сведения
Основу эксплуатируемого сегодня в мире парка теплонасосного оборудования составляют парокомпрессионные тепловые насосы, но применяются также и абсорбционные, электрохимические и термоэлектрические.
При использовании обычного отопления при помощи источника энергии, с помощью которого можно получить механическую работу A{\displaystyle A}, количество теплоты Qout{\displaystyle Q_{out}}, поступающее в отопительную систему, равно этой работе Qout=A{\displaystyle Q_{out}=A}.
Если же эту работу использовать для приведения в действие теплового насоса, то получаемая нагреваемым телом теплота Qout{\displaystyle Q_{out}} будет больше, чем совершаемая работа A:Qout>A{\displaystyle A:Q_{out}>A}. Пусть температура воды в системе отопления равна Tout{\displaystyle T_{out}}, а температура окружающей отапливаемое помещение среды равна Tin{\displaystyle T_{in}}, причем Tin<Tout{\displaystyle T_{in}<T_{out}}. Тогда получаемое отопительной системой количество теплоты Qout=AToutTout−Tin=A11−TinTout{\displaystyle Q_{out}=A{\frac {T_{out}}{T_{out}-T_{in}}}=A{\frac {1}{1-{\frac {T_{in}}{T_{out}}}}}}. Таким образом, чем меньше температура отопительной системы Tout{\displaystyle T_{out}} отличается от температуры окружающей среды Tout{\displaystyle T_{out}}, тем больший выигрыш дает тепловой насос по сравнению с непосредственным превращением работы в теплоту[2].
Величину K=ToutTout−Tin{\displaystyle K={\frac {T_{out}}{T_{out}-T_{in}}}} называют коэффициентом трансформации теплового насоса. Коэффициент трансформации теплового насоса, или теплонасосной системы теплоснабжения (ТСТ) «Ktr» представляет собой отношение полезного тепла, отводимого в систему теплоснабжения потребителю, к энергии, затрачиваемой на работу теплонасосной системы теплоснабжения, и численно равен количеству полезного тепла, получаемого при температурах Тоut и Тin, на единицу энергии, затраченной на привод ТН или ТСТ. Реальный коэффициент трансформации отличается от идеального, описанного формулой (1 1), на величину коэффициента h, учитывающего степень термодинамического совершенства ГТСТ и необратимые потери энергии при реализации цикла. В[3] приведены зависимости реального и идеального коэффициентов трансформации (К тр) теплонасосной системы теплоснабжения от температуры источника тепла низкого потенциала Тin и температурного потенциала тепла, отводимого в систему отопления Тоut. При построении зависимостей, степень термодинамического совершенства ТСТ h была принята равной 0,55, а температурный напор (разница температур хладона и теплоносителя) в конденсаторе и в испарителе тепловых насосов был равен 7 °C. Эти значения степени термодинамического совершенства h и температурного напора между хладоном и теплоносителями системы отопления и теплосбора представляются близкими к действительности с точки зрения учета реальных параметров теплообменной аппаратуры (конденсатор и испаритель) тепловых насосов, а также сопутствующих затрат электрической энергии на привод циркуляционных насосов, систем автоматизации, запорной и управляющей арматуры.
В общем случае степень термодинамического совершенства теплонасосных систем теплоснабжения h зависит от многих параметров, таких, как: мощность компрессора, качество производства комплектующих теплового насоса и необратимых энергетических потерь, которые, в свою очередь, включают:
- потери тепловой энергии в соединительных трубопроводах;
- потери на преодоление трения в компрессоре;
- потери, связанные с неидеальностью тепловых процессов, протекающих в испарителе и конденсаторе, а также с неидеальностью теплофизических характеристик хладонов;
- механические и электрические потери в двигателях и прочее.
В табл.1-1 представлены «средние» значения степени термодинамического совершенства h для некоторых типов компрессоров, используемых в современных теплонасосных системах теплоснабжения.
Таблица 1-1. Эффективность некоторых типов компрессоров, используемых в современных теплонасосных системах теплоснабжения [источник не указан 2489 дней]
Мощность, кВт | Тип компрессора | Эффективность (степень термодинамического совершенства) h, доли ед. |
---|---|---|
300−3000 | Открытый центробежный | 0,55-0,75 |
50-500 | Открытый поршневой | 0,5-0,65 |
20-50 | Полугерметичный | 0,45-0,55 |
2-25 | Герметичный, с R-22 | 0,35-0,5 |
0,5-3,0 | Герметичный, с R-12 | 0,2-0,35 |
<0,5 | Герметичный | <0,25 |
Как и холодильная машина, тепловой насос потребляет энергию на реализацию термодинамического цикла (привод компрессора). Коэффициент преобразования теплового насоса — отношение теплопроизводительности к электропотреблению — зависит от уровня температур в испарителе и конденсаторе. Температурный уровень теплоснабжения от тепловых насосов в настоящее время может варьироваться от 35 °C до 55 °C, что позволяет использовать практически любую систему отопления. Экономия энергетических ресурсов достигает 70 %[4]. Промышленность технически развитых стран выпускает широкий ассортимент парокомпрессионных тепловых насосов тепловой мощностью от 5 до 1000 кВт.
История
Концепция тепловых насосов была разработана ещё в 1852 году выдающимся британским физиком и инженером Уильямом Томсоном (лордом Кельвином) и в дальнейшем усовершенствована и детализирована австрийским инженером Петером Риттер фон Риттингером (нем.)русск.. Петера Риттера фон Риттингера считают изобретателем теплового насоса, ведь именно он спроектировал и установил первый известный тепловой насос в 1855 году[5]. Но практическое применение тепловой насос приобрел значительно позже, а точнее в 40-х годах XX века, когда изобретатель-энтузиаст Роберт Вебер (Robert C. Webber) экспериментировал с морозильной камерой[6]. Однажды Вебер случайно прикоснулся к горячей трубе на выходе камеры и понял, что тепло просто выбрасывается наружу. Изобретатель задумался над тем, как использовать это тепло, и решил поместить трубу в бойлер для нагрева воды. В результате Вебер обеспечил свою семью таким количеством горячей воды, которое они физически не могли использовать, при этом часть тепла от нагретой воды попадала в воздух. Это подтолкнуло его к мысли, что от одного источника тепла можно нагревать и воду, и воздух одновременно, поэтому Вебер усовершенствовал своё изобретение и начал прогонять горячую воду по спирали (через змеевик) и с помощью небольшого вентилятора распространять тепло по дому с целью его отопления. Со временем именно у Вебера появилась идея «выкачивать» тепло из земли, где температура не слишком изменялась в течение года. Он поместил в грунт медные трубы, по которым циркулировал фреон, который «собирал» тепло земли. Газ конденсировался, отдавал своё тепло в доме, и снова проходил через змеевик, чтобы подобрать следующую порцию тепла. Воздух приводился в движение с помощью вентилятора и распространялся по дому. В следующем году Вебер продал свою старую угольную печь.
В 1940-х годах тепловой насос был известен благодаря своей чрезвычайной эффективности, но реальная потребность в нём возникла после нефтяного кризиса 1973 года, когда, несмотря на низкие цены на энергоносители, появился интерес к энергосбережению.
Эффективность
В процессе работы компрессор потребляет электроэнергию. Соотношение перекачиваемой тепловой энергии и потребляемой электрической называется коэффициентом трансформации (или коэффициентом производительности (англ. COP — сокр. от coefficient of performance) и служит показателем эффективности теплового насоса. Для вычисления COP используется следующая формула:
- COP=QconsumerA=Qin×kA{\displaystyle COP={\frac {Q_{consumer}}{A}}={\frac {Q_{in}\times k}{A}}}
где
- COP{\displaystyle {COP}} — безразмерный коэффициент;
- A{\displaystyle A} — работа, совершенная насосом [Дж];
- Qin{\displaystyle Q_{in}} — теплота, забираемая тепловым насосом из источника низкопотенциального тепла [Дж];
- Qconsumer{\displaystyle Q_{consumer}} — теплота, полученная потребителем [Дж].
- k- коэффициент полезного действия
Величина A показывает, какую работу необходимо совершить тепловому насосу для «перекачки» определённого объёма тепла. Эта величина зависит от разности уровня температур в испарителе и конденсаторе: то есть температура теплоносителя в «холодной части устройства» должна быть всегда ниже температуры источника низкопотенциального тепла, чтобы энергия от источника низкопотенциального тепла смогла произвольно перетечь к теплоносителю или рабочему телу (Второе начало термодинамики).
то есть COP = 2 означает, что тепловой насос переносит полезного тепла в два раза больше, чем затрачивает на свою работу.
Пример:
Тепловой насос потребляет Pтн = 1 кВт, COP = 3.0 — означает, что потребитель получает Pтн * COP = 1 * 3 = 3 кВт;
потребитель получает Pп = 3 кВт, COP = 3.0 — означает, что тепловой насос потребляет Pп / COP = 3 / 3 = 1 кВт
считаем что КПД компрессора или процесса его заменяющего 100 %
По этой причине тепловой насос должен использовать по возможности более ёмкий источник низкопотенциального тепла, не стремясь добиться его сильного охлаждения. В самом деле, при этом растёт эффективность теплового насоса, поскольку при слабом охлаждении источника тепла сохраняется возможность теплу самопроизвольно перетекать от источника низкопотенциального тепла к теплоносителю. По этой причине тепловые насосы делают так, чтобы запас теплоты (С*m*T, c — теплоёмкость, m — масса, T — температура) низкопотенциального источника тепла был бы как можно больше.
Например: газ (рабочее тело) отдает энергию «горячей» части теплонасоса (для этого газ сжимают), после чего охлаждают ниже источника низкопотенциального тепла (может быть использован дроссельный эффект (эффект Джоуля — Томсона)). Газ поступает в источник низкопотенциального тепла и нагревается от этого источника, затем цикл повторяется.
Проблема привязки теплового насоса к источнику низкопотенциального тепла, имеющего большой запас теплоты может быть решена введением в тепловой насос системы переноса тепла теплоносителем, который осуществляет перенос теплоты к рабочему телу. Таким посредником могут быть вещества со значительной теплоёмкостью, например вода.
Хорошо видно, чтобы построить эффективную машину, необходимо подобрать такое рабочее тело, чтобы для сжатия (для извлечения тепла из рабочего тела) компрессор использовал бы минимум энергии, и как можно ниже (резко возрастает возможное число источников) была бы температура рабочего тела при подводе его к источнику низкопотенциального тепла.
Условный КПД тепловых насосов
КПД теплового насоса приводит многих в замешательство, так как если выполнить «очевидный расчет», то он принципиально больше 1, однако работа теплового насоса полностью подчиняется закону сохранения энергии. То есть если считать тепловой насос «черным ящиком», то действительно, устройство потребляет энергии меньше, чем производит тепла, что принципиально.
Однако, подобные расчеты просто неправильны и не учитывают источник энергии, кроме потребляемого электричества. Таким источником обычно является теплый воздух или вода, нагретые Солнцем или геотермальными процессами. Электроэнергия в устройстве не тратится непосредственно на нагрев, а тратится на «концентрацию» энергии источника низкопотенциального тепла, как правило обеспечивая энергией работу компрессора. Т.е тепловой насос имеет два источника энергии — электричество и источник низкопотенциального тепла, а расчеты не учитывают второй источник, и получаются значения больше единицы.
Пример:
Пусть тепловой насос потребляет из электрической сети 1 КВт и отдает потребителю 4 Квт, и забирает из низкопотенциального источника 5 Квт.
Расчет типа Pпотребителя/Pсети = 4/1 = 4 — неправильный, так как не учитывает источник низкопотенциального тепла.
Правильный расчет для КПД теплового насоса:
Pпотребителя /(Pсети + Pисточника) = 4 /(1 + 5) = 0.67
Как правило, оценить, сколько тепловой насос переносит тепла из источника низкопотенциального тепла, довольно затруднительно, что и приводит к ошибке.
Однако если в расчете учесть и источник низкопотенциального тепла, то КПД машины станет принципиально меньше единицы. Для избежания путаницы были введены коэффициенты: COP и степень термодинамического совершенства. COP показывает во сколько раз тепловая энергия переданная потребителю превышает количество работы необходимой для переноса тепла от низкопотенциального источника, а степень термодинамического совершенства показывает насколько реальный тепловой цикл теплового насоса приближен к идеальному тепловому циклу.
Типы тепловых насосов
Схема компрессионного теплового насоса.1) конденсатор, 2) дроссель, 3) испаритель, 4) компрессор.
В зависимости от принципа работы тепловые насосы подразделяются на компрессионные и абсорбционные. Компрессионные тепловые насосы всегда приводятся в действие с помощью механической энергии (электроэнергии), в то время как абсорбционные тепловые насосы могут также использовать тепло в качестве источника энергии (с помощью электроэнергии или топлива).
Также известны полупроводниковые тепловые насосы, использующие в своей работе эффект Пельтье[7].
В зависимости от источника отбора тепла тепловые насосы подразделяются на[8] :
1) Геотермальные (используют тепло земли, наземных либо подземных грунтовых вод)
а) замкнутого типа
- горизонтальные Горизонтальный геотермальный тепловой насос
Коллектор размещается кольцами или извилисто в горизонтальных траншеях ниже глубины промерзания грунта (обычно от 1,2 м и более)[9]. Такой способ является наиболее экономически эффективным для жилых объектов при условии отсутствия дефицита земельной площади под контур.
Коллектор размещается вертикально в скважины глубиной до 200 м[10]. Этот способ применяется в случаях, когда площадь земельного участка не позволяет разместить контур горизонтально или существует угроза повреждения ландшафта.
Коллектор размещается извилисто либо кольцами в водоёме (озере, пруду, реке) ниже глубины промерзания. Это наиболее дешёвый вариант, но есть требования по минимальной глубине и объёму воды в водоёме для конкретного региона.
- С непосредственным теплообменом (DX — сокр. от англ. direct exchange — «прямой обмен»)
В отличие от предыдущих типов, хладагент компрессором теплового насоса подаётся по медным трубкам, расположенным:
- Вертикально в скважинах длиной 30 м и диаметром 80 мм
- Под углом в скважинах длиной 15 м и диаметром 80 мм
- Горизонтально в грунте ниже глубины промерзания
Циркуляция хладагента компрессором теплового насоса и теплообмен фреона напрямую через стенку медной трубы с более высокими показателями теплопроводности обеспечивает высокую эффективность и надёжность геотермальной отопительной системы. Также использование такой технологии позволяет уменьшить общую длину бурения скважин, уменьшая таким образом стоимость установки DX Direct Exchange Heatpump
б) открытого типа
Подобная система использует в качестве теплообменной жидкости воду, циркулирующую непосредственно через систему геотермального теплового насоса в рамках открытого цикла, то есть вода после прохождения по системе возвращается в землю. Этот вариант возможно реализовать на практике лишь при наличии достаточного количества относительно чистой воды и при условии, что такой способ использования грунтовых вод не запрещён законодательством.
2) Воздушные (источником отбора тепла является воздух) Используют в качестве источника низкопотенциальной тепловой энергии воздух. Причем источником теплоты может быть не только наружный (атмосферный) воздух, но и вытяжной вентиляционный воздух (общеобменной или местной) вентиляции зданий[11].
3) Использующие производное (вторичное) тепло (например, тепло трубопровода центрального отопления). Подобный вариант является наиболее целесообразным для промышленных объектов, где есть источники паразитного тепла, которое требует утилизации.
Типы промышленных моделей
Тепловой насос «солевой раствор — вода»По виду теплоносителя во входном и выходном контурах насосы делят на восемь типов: «грунт—вода», «вода—вода», «воздух—вода», «грунт—воздух», «вода—воздух», «воздух—воздух» «фреон—вода», «фреон—воздух». Тепловые насосы могут использовать тепло выпускаемого из помещения воздуха, при этом подогревать приточный воздух — рекуператоры.
Отбор тепла от воздуха
Эффективность и выбор определённого источника тепловой энергии сильно зависят от климатических условий, особенно, если источником отбора тепла является атмосферный воздух. По сути этот тип более известен в виде кондиционера. В жарких странах таких устройств десятки миллионов. Для северных стран наиболее актуален обогрев зимой. Системы «воздух-воздух» и «воздух-вода» используются и зимой при температурах до минус 25 градусов, некоторые модели продолжают работать до −40 градусов. Но их эффективность невысока, порядка 1.5 раза, а за отопительный сезон в среднем около 2.2 раза по сравнению с электрическими нагревателями. При сильных морозах используется дополнительное отопление. Когда мощности основной системы отопления тепловыми насосами недостаточно, включаются дополнительные источники теплоснабжения. Такую систему называют бивалентной.
Отбор тепла от горной породы
Скальная порода требует бурения скважины на достаточную глубину (100—200 метров) или нескольких таких скважин. В скважину опускается U-образный груз с двумя пластиковыми трубками, составляющими контур. Трубки заполняются антифризом. По экологическим соображениям это 30 % раствор этилового спирта. Скважина заполняется грунтовыми водами естественным путём, и вода проводит тепло от камня к теплоносителю. При недостаточной длине скважины или попытке получить от грунта сверхрасчётную мощность, эта вода и даже антифриз могут замёрзнуть что и ограничивает максимальную тепловую мощность таких систем. Именно температура возвращаемого антифриза и служит одним из показателей для схемы автоматики. Ориентировочно на 1 погонный метр скважины приходится 50-60 Вт тепловой мощности. Таким образом, для установки теплового насоса производительностью 10 кВт необходима скважина глубиной около 170 м. Нецелесообразно бурить глубже 200 метров, дешевле сделать несколько скважин меньшей глубины через 10 — 20 метров друг от друга. Даже для маленького дома в 110—120 кв.м. при небольшом энергопотреблении срок окупаемости 10 — 15 лет. Почти все имеющиеся на рынке установки работают и летом, при этом тепло (по сути солнечная энергия) отбирается из помещения и рассеивается в породе или грунтовых водах. В скандинавских странах со скальным грунтом гранит выполняет роль массивного радиатора, получающего тепло летом/днём и рассеивающего его обратно зимой/ночью. Также тепло постоянно приходит из недр Земли и от грунтовых вод.
Отбор тепла от грунта
Самые эффективные, но и самые дорогие схемы предусматривают отбор тепла от грунта, чья температура не меняется в течение года уже на глубине нескольких метров, что делает установку практически независимой от погоды. По данным[источник не указан 2781 день] 2006 года в Швеции полмиллиона подобных установок, в Финляндии 50 000, в Норвегии устанавливалось в год до 70 000. При использовании в качестве источника тепла энергии грунта трубопровод, в котором циркулирует антифриз, зарывают в землю на 30-50 см ниже уровня промерзания грунта в данном регионе. На практике 0,7 — 1,2 метра[источник не указан 2781 день]. Минимальное рекомендуемое производителями расстояние между трубами коллектора — 1,2…1,5 метра. Здесь не требуется бурение, но требуются более обширные земельные работы на большой площади, и трубопровод более подвержен риску повреждения. Эффективность такая же, как при отборе тепла из скважины. Специальной подготовки почвы не требуется. Но желательно использовать участок с влажным грунтом, если же он сухой, контур надо сделать длиннее. Ориентировочное значение тепловой мощности, приходящейся на 1 м трубопровода: в глине — 50-60 Вт, в песке — 30-40 Вт для умеренных широт, на севере значения меньше. Таким образом, для установки теплового насоса производительностью 10 кВт необходим земляной контур длиной 350—450 м, для укладки которого потребуется участок земли площадью около 400 м² (20х20 м). При правильном расчёте контур мало влияет на зелёные насаждения[источник не указан 2781 день].
Разное
Устройство беструбного водоподъёма, соединённое с погружным скважинным электронасосом ЭЦВ10-63-110В скважинах диаметром 218—324 мм можно существенно снизить необходимую глубину скважины до 50-70 м, увеличить отбор тепловой энергии минимум до 700 Вт на 1 пог. м. скважины и обеспечить стабильность круглогодичной эксплуатации[12] позволяет применение активного контура первичного преобразователя теплового насоса, размещённого в стволе водозаборной скважины (применяется в скважинах имеющих погружной насос, с устройством беструбного водоподъёма, который создаёт проточность жидкости в стволе скважины, продувая током перекачиваемой жидкости теплообменный контур с хладагентом первичного преобразователя теплового насоса, увеличивая отбор тепла не только от прилегающего массива грунта, но и от перекачиваемой жидкости).
Отбор тепла от водоёма
При использовании в качестве источника тепла близлежащего водоёма контур укладывается на дно. Глубина не менее 2 метров. Коэффициент преобразования энергии тепловым насосом такой же, как при отборе тепла от грунта. Ориентировочное значение тепловой мощности на 1 м трубопровода — 30 Вт. Таким образом, для установки теплового насоса производительностью 10 кВт необходимо уложить в озеро контур длиной 300 м. Чтобы трубопровод не всплывал, на 1 пог. м устанавливается около 5 кг груза. Промышленные образцы: 70 — 80 кВт*ч/м в год.
Если тепла из внешнего контура всё же недостаточно для отопления в сильные морозы, практикуется эксплуатация насоса в паре с дополнительным генератором тепла (в таких случаях говорят об использовании бивалентной схемы отопления). Когда уличная температура опускается ниже расчётного уровня (температуры бивалентности), в работу включается второй генератор тепла — чаще всего небольшой электронагреватель.
Преимущества и недостатки
К преимуществам тепловых насосов в первую очередь следует отнести экономичность: для передачи в систему отопления 1 кВт·ч тепловой энергии установке необходимо затратить всего 0,2-0,35 кВт·ч электроэнергии. Так как преобразование тепловой энергии в электрическую на крупных электростанциях происходит с кпд до 50 %, эффективность использования топлива при применении тепловых насосов повышается — тригенерация. Упрощаются требования к системам вентиляции помещений и повышается уровень пожарной безопасности. Все системы функционируют с использованием замкнутых контуров и практически не требуют эксплуатационных затрат, кроме стоимости электроэнергии, необходимой для работы оборудования.
Ещё одним преимуществом тепловых насосов является возможность переключения с режима отопления зимой на режим кондиционирования летом: просто вместо радиаторов к внешнему коллектору подключаются фэн-койлы или системы «холодный потолок».
Тепловой насос надёжен, его работой управляет автоматика. В процессе эксплуатации система не нуждается в специальном обслуживании, возможные манипуляции не требуют особых навыков и описаны в инструкции.
Важной особенностью системы является её сугубо индивидуальный характер для каждого потребителя, который заключается в оптимальном выборе стабильного источника низкопотенциальной энергии, расчете коэффициента преобразования, окупаемости и прочего.
Теплонасос компактен (его модуль по размерам не превышает обычный холодильник) и практически бесшумен.
Хотя идея, высказанная лордом Кельвином в 1852 году, была реализована уже спустя четыре года, практическое применение теплонасосы получили только в 1930-х годах. К 2012 году в Японии, эксплуатируется более 3,5 миллионов установок[13], в Швеции около 500 000 домов обогревается тепловыми насосами различных типов.
К недостаткам геотермальных тепловых насосов, используемых для отопления, следует отнести большую стоимость установленного оборудования, необходимость сложного и дорогого монтажа внешних подземных или подводных теплообменных контуров. Недостатком воздушных тепловых насосов является более низкий коэффициент преобразования тепла, связанный с низкой температурой кипения хладагента во внешнем «воздушном» испарителе. Общим недостатком тепловых насосов является сравнительно низкая температура нагреваемой воды, в большинстве не более +50 °С ÷ +60 °С, причём, чем выше температура нагреваемой воды, тем меньше эффективность и надёжность теплового насоса.
Перспективы
Для установки теплового насоса необходимы первоначальные затраты: стоимость насоса и монтажа системы составляет 300—1200 долларов на 1 кВт необходимой мощности отопления. Время окупаемости теплонасосов составляет 4—9 лет, при сроке службы 15—20 лет до капитального ремонта.
Существует и альтернативный взгляд на экономическую целесообразность установки теплонасосов. Так, если установка теплонасоса производится на средства, взятые в кредит, экономия от использования теплонасоса может быть меньше, чем стоимость использования кредита. Поэтому массовое использования теплонасосов в частном секторе можно ожидать, если стоимость теплонасосного оборудования будет сопоставима с затратами на установку газового отопления и подключения к газовой сети.
Ещё более многообещающей является система, комбинирующая в единую систему теплоснабжения геотермальный источник и тепловой насос. При этом геотермальный источник может быть как естественного (выход геотермальных вод), так и искусственного происхождения (скважина с закачкой холодной воды в глубокий слой и выходом на поверхность нагретой воды).
Другим возможным применением теплового насоса может стать его комбинирование с существующими системами централизованного теплоснабжения. К потребителю в этом случае может подаваться относительно холодная вода, тепло которой преобразуется тепловым насосом в тепло с потенциалом, достаточным для отопления. Но при этом вследствие меньшей температуры теплоносителя потери на пути к потребителю (пропорциональные разности температуры теплоносителя и окружающей среды) могут быть значительно уменьшены. Также будет уменьшен износ труб центрального отопления, поскольку холодная вода обладает меньшей коррозионной активностью, чем горячая.
Ограничения применимости тепловых насосов
Основным недостатком теплового насоса является обратная зависимость его эффективности от разницы температур между источником теплоты и потребителем. Это накладывает определённые ограничения на использование систем типа «воздух — вода». Реальные значения эффективности современных тепловых насосов составляют порядка COP=2.0 при температуре источника −20 °C, и порядка COP=4.0 при температуре источника +7 °C. Это приводит к тому, что для обеспечения заданного температурного режима потребителя при низких температурах воздуха необходимо использовать оборудование со значительной избыточной мощностью, что сопряжено с нерациональным использованием капиталовложений (впрочем, это касается и любых других источников тепловой энергии). Решением этой проблемы является применение так называемой бивалентной схемы отопления, при которой основную (базовую) нагрузку несёт тепловой насос, а пиковые нагрузки покрываются вспомогательным источником (газовый или электрокотел). Оптимальная мощность теплонасосной установки составляет 60…70 % от необходимой установленной мощности, что также влияет на закупочную стоимость установки отопления тепловым насосом. В этом случае тепловой насос обеспечивает не менее 95 % потребности потребителя в тепловой энергии за весь отопительный сезон. При такой схеме среднесезонный коэффициент преобразования энергии для климатических условий Центральной Европы равен порядка COP=3. Коэффициент использования первичного топлива для такой системы легко определить, исходя из того, что КПД тепловых электростанций составляет от 40 % (тепловые электростанции конденсационного типа) до 55 % (парогазовые электростанции). Соответственно, для рассматриваемой теплонасосной установки коэффициент использования первичного топлива лежит в пределах 120 %…165 %, что в 2…3 раза выше, чем соответствующие эксплуатационные характеристики газовых котлов (65 %) или систем центрального отопления (50…60 %). Понятно, что системы, использующие геотермальный источник теплоты или теплоту грунтовых вод, свободны от этого недостатка. С ростом степени сжатия компрессором растет температура нагнетания, что ограничивает температуру конденсации. Ограничение в степени сжатия компрессора и понижение его КПД с ростом степени сжатия приводит к необходимости использования низкотемпературных систем отопления (системы поверхностного нагрева типа «теплый пол», теплая стена, теплый плинтус, воздушные системы отопления с применением фен-койлов и т. п.). Это ограничение касается только высокотемпературных радиаторных систем отопления. С развитием холодильных компрессоров появились компрессоры позволяющие достигать высоких температур конденсации при использовании впрыска пара и жидкого фреона (хладона) в процессе сжатия, что позволяет повысить степень сжатия и уменьшить перегрев компрессора. Выход из создавшейся ситуации, возможен применением водокольцевого компрессора высокого давления. Где в процессе сжатия атмосферного воздуха происходит мгновенное поглощение тепла водой, при этом достигается двойная выгода; горячая вода+сжатый воздух, позволяющий получить электроэнергию как на ГПА так и на ГТУ.
Основные схемы отопления с применением тепловых насосов
Стандартные объекты обогрева
Литература
- Копп О. А., Семененко Н. М. Геотермальное отопление. Тепловые насосы. // Научно-методический электронный журнал «Концепт», 2017.[14]
- Лунева С. К., Чистович А. С., Эмиров И. Х. К вопросу применения тепловых насосов. // Журнал «Технико-технологические проблемы сервиса», 2013.[15]
См. также
Примечания
- ↑ Тепловой насос // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
- ↑ Бутиков Е. И., Быков А. А., Кондратьев А. С. Физика в примерах и задачах. — М., Наука, 1989. — Тираж 310000 экз. — с. 212
- ↑ Васильев Г. П. Теплохладоснабжение зданий и сооружений с использованием низкопотенциальной тепловой энергии поверхностных слоёв Земли (Монография). Издательский дом «Граница». М., «Красная звезда» — 2006. — 220 °C.
- ↑ Васильев Г. П., Хрустачев Л. В., Розин А. Г., Абуев И. М. и др. Руководство по применению тепловых насосов с использованием вторичных энергетических ресурсов и нетрадиционных возобновляемых источников энергии // Правительство Москвы Москомархитектура, ГУП «НИАЦ», 2001.
- ↑ Burg Rabenstein Архивировано 11 сентября 2010 года.
- ↑ About Us. What is IGSHPA? / International Ground Source Heat Pump Association (англ.)
- ↑ Бальян С. В. Техническая термодинамика и тепловые двигатели. — Л., Машиностроение, 1973. — Тираж 23000 экз. — с. 141
- ↑ System Theory Models of Different Types of Heat Pumps // WSEAS Conference in Portoroz, Slovenia. 2007. (англ.)
- ↑ Energy Savers: Types of Geothermal Heat Pump Systems Архивировано 29 декабря 2010 года.
- ↑ Bedrock heat pump (недоступная ссылка с 12-08-2015 [1155 дней])
- ↑ Отопление с помощью тепловых насосов
- ↑ Васильев Г. П. Теплохладоснабжение зданий и сооружений с использованием низкопотенциальной тепловой энергии поверхностных слоёв Земли (Монография). Издательский дом «Граница». М., «Красная звезда» — 2006. — 220c.
- ↑ Развитие рынка тепловых насосов в Японии — Портал-Энерго.ru — энергоэффективность и энергосбережение, 27.03.2013
- ↑ Геотермальное отопление. Тепловые насосы
- ↑ К вопросу применения тепловых насосов
Что такое тепловой насос — их типы и устройство, положительные и отрицательные стороны
Для полноценного функционирования систем отопления, подачи горячей воды, а также работы кондиционеров необходим постоянный источник энергии. Существует множество различных теплогенераторов, работающих от электричества, на дизельном топливе или газе. Каждый имеет свои недостатки: запах, опасность воспламенения, сложность конструкции и т.д. Тепловой насос – современное решение, которое избавит от большинства проблем.
Самым важным достоинством устройства является его удобство в применении. Тепловое оборудование использует энергию, накопленную в течение теплого времени года из окружающей природы: земли, воды, каменных пород. При выборе такого типа устройства вы навсегда забудете запах газа и дизеля, снизите пожароопасность жилья, сэкономите на энергопотреблении.
Функционирование систем отопления, работа которых основана на электрической энергии, требуют большой мощности, что не всегда представляется возможным. Решить данную проблему поможет установка теплового насоса. Для его успешной эксплуатации потребуется природный источник питания. Если сравнить количество потребления такого устройства с традиционным отоплением, то для его полноценного функционирования достаточно 1/4 мощности стандартной системы.
Тепловой насос существенно экономит затраты на энергию. Цена на установку такого оборудования в сравнении с монтажом котлов, функционирующих на топливе или электричестве, дорогостояща. Но оно окупает себя за счет экономии на расходе энергоносителя в течение 3-5 лет.
Принципы работы устройства
Конструкция теплового насоса имеет два трубопровода: внешний и внутренний. Один прокладывается через источник энергии, которым является природный элемент. Им может быть грунт, водоемы, породы скал или воздух.
Теплоноситель прокачивается по трубам через источник и нагревается на несколько градусов. Затем он проникает внутрь насоса, проходит через теплообменник, выполняющий функцию испарителя. Тепло отдается внутреннему контуру, который заполнен материалом, закипающему при маленьких температурах. При соприкосновении с данным элементом жидкость испаряется и превращается в пар. Для этого достаточно иметь температуру – 50 °С.
Газообразное вещество проводится в компрессорный отдел. Здесь оно сжимается, давление внутри резко увеличивается, температура повышается. После этого газ переносится в конденсатор, в котором отдает тепло жидкости, циркулирующей в радиаторах отопления. Горячий газ остывает и вновь возвращается в свое прежнее состояние, а нагретый теплоноситель поступает по трубам в радиаторы.
Хладагент, проходя обратно через конденсатор, понижает свою температуру еще на несколько градусов, но давление его остается прежним. Для того чтобы понизить напор жидкости, она поступает обратно в испаритель через специальный редукционный клапан. Цикл начинается снова.
Виды природных источников тепла
Источником теплоэнергии может быть любой природный материал, который имеет температуру независимо от времени года не ниже – 1 °С. В качестве него используют озера, реки, море, породы скал, землю, теплый воздух из системы кондиционирования и вентиляции и другие.
Внешний контур – полиэтиленовые трубы. Они устанавливаются в источнике тепла. Трубопровод собирает тепловую энергию из окружающей среды. Жидкость, находящаяся внутри системы, состоит из 30% этилового спирта или этиленгликоля.
Скалистые породы
При использовании скалистых пород вырывается скважина. В нее опускается полиэтиленовый трубопровод. Скважина должна быть глубокой. Для удешевления процесса часто выкапывают два или более отверстий в породе. Глубина в таком случае рассчитывается из общих размеров. Для того чтобы все сделать правильно, следует учесть производительную силу теплового насоса. 50-60 Вт энергии тепла – это 1 метр глубины скважины. При использовании насоса мощностью 10 кВт необходимо вырыть ее на 170 метров.
Грунт
Для теплового насоса используется грунт с повышенной влажностью. Лучше всего для этого подходят участки с расположенными рядом подземными реками. Благодаря грунтовым водам земля будет постоянно увлажняться в любое время года. Внешний контур теплового насоса прокладывается глубоко в почву на расстояние не менее, чем 1 метр от поверхности. Между трубопроводами должен быть выдержан отрезок от 80 см до 1 метра.
Полезная мощность теплового насоса с уложенным в грунт внешним контуром составляет от 20 до 30 Вт/м. Поэтому для монтажа оборудования, имеющим производительность 10 кВт, необходимо взять трубу длиной не менее 450 м. Для этого достаточно иметь площадь 20 на 20 кв.м.
Перед укладкой трубопровода в землю участок не требует специальной подготовки. Расположенные на поверхности объекты и растения никакого влияния на внешний контур теплового насоса не имеют. Самым важным при монтаже труб в грунт является правильный расчет.
Вода
Самым идеальным источником тепла для насоса является водоем, расположенный на близком расстоянии от объекта отопления. При использовании озер или рек трубопровод прокладывается по самому дну. Данный способ считается наиболее удачным, потому что в водоеме в любое время года температура всегда остается положительной. Зачастую зимой на дне вода имеет самый «высокий» показатель.
Для получения максимальной пользы не нужно прокладывать длинный внешний контур. Короткие трубы позволяют преобразовать максимум энергии. Для того чтобы выработать 30 Вт мощности, необходим 1 м трубопровода, на 10 кВт понадобится около 300 м. При монтаже внешнего контура важно его закрепить на дне водоема так, чтобы он не всплывал, поэтому рекомендуется подвесить на каждый метр трубопровода груз весом около 5 кг.
Теплый воздух
Воздух может стать хорошим источником тепла. Для этого разработана специальная модель. Насос преобразует тепло из вытяжки вентиляции. Часто такой тип отопления используется на крупных промышленных помещениях, где вырабатывается горячий воздух в большом количестве. Это могут быть пекарни. Также воздушные насосы широко применяются при производстве керамических изделий. Подобные модели отлично подходят для отопления загородных дач в летний период.
Пиковый электронагреватель
Практически все модели тепловых насосов имеют важный элемент – электронагреватель. При покупке отопительного оборудования необходимо учитывать показатель номинальной мощности. Он высчитывается в условиях максимальной нагрузки при самой низкой температуре. Но в большинстве регионах страны такие условия держатся всего несколько недель в году, поэтому приобретать тепловой насос большей мощностью из расчета на данный период нецелесообразно. Фактически потенциальные возможности устройства не будут использоваться. Выгоднее приобрести оборудование меньшей мощности и в случае необходимости подключать к нему электрообогрев.
Электронагреватель имеет небольшую стоимость, но он затратен в потреблении электроэнергии. Тепловой насос наоборот, сам по себе стоит дорого, но вырабатывает дешевую энергию. Использование их в комбинации друг с другом позволит получить максимальную отдачу тепла и существенно сэкономить на коммунальных платежах. Разумное применение сократит окупаемость оборудования в несколько раз. Определение совместимых мощностей для теплового насоса и электронагревателя высчитывается по универсальному интегральному графику.
Активное и пассивное кондиционирование
При работе теплового насоса происходит естественный процесс кондиционирования. Зимой тепло забирается из природных источников и запускается в систему отопления дома, а летом холодные температуры переносятся в помещение из скважин или водоемов. Принцип работы при кондиционировании такой же, что и при отоплении. Единственным различием является то, что вместо радиаторов ставятся фанкойлы.
Существует два режима, при которых происходит поступление холодного воздуха в помещение. При пассивном кондиционировании теплоноситель просто проходит цикл за циклом между источником и фанкойлом. Холодный воздух поступает в дом без включения компрессора. Его подключают в том случае, если такого охлаждения недостаточно. Охлаждение с работающим компрессором называется активным.
Тепловой насос в системе теплых полов
Тепловой насос идеально походит для нагрева системы теплых полов. По своим техническим характеристикам оборудование подает теплоноситель, который имеет максимальную температуру не выше 55 °С. Для успешной организации радиаторного отопления следует правильно произвести все расчеты, иначе насос не сможет дать нужное количество тепла. Для подогрева пола такой температуры хватит сполна.
При комплексной установке насоса и системы теплого пола энергия будет не только экономно затрачиваться, но и равномерно распределяться по всей поверхности. Энергоресурсы в данном техническом тандеме расходуются на 80% меньше, чем при эксплуатации традиционных методов отопления.
Оцените статью: Поделитесь с друзьями!Обзор тепловых насосов для отопления
Тепловой насос — хорошая альтернатива традиционному отоплению частного дома. Прибор, используемый в течение 30 лет в странах Запада, в России еще является новинкой. Препятствием для его широкого использования являются два фактора: высокая стоимость и недостаток сведений о тепловых насосах, их преимуществах и принципах работы. Показателем практичности геотермальной системы отопления служит ее популярность на Западе. Так, тепловыми насосами в Швеции и Норвегии отапливаются около 95% домов. Предлагаем вам подробнее ознакомиться с устройством и принципами работы этого теплового оборудования, за которым, непременно, будущее.Что такое тепловой насос?
Тепловой насос — прибор, поглощающий из окружающей среды (вода, земля, воздух) низко потенциальную тепловую энергию и передающий ее в системы теплоснабжения с более высокой температурой.
Природа вокруг нас пропитана энергией. Даже мороз обладает теплом. Энергию невозможно извлечь из окружающей среды только при температуре -273 °С. Поэтому даже в самую лютую зиму загородный дом может отапливаться за счет энергии, полученной от природы.
В зависимости от источника энергии (вода, земля, воздух), происходит модификация тепловых насосов. Однако наиболее практичным и испытанным является геотермальный тепловой насос, применяющий энергию грунта. Он идеально подходит для российских условий.
Геотермальное отопление работает по одному из трех направлений:
- Сквозь специальную трубу, установленную в скважине, грунтовые воды извлекаются на поверхность земли. Они имеют определенную температуру. Проходя через теплообменник, вода передает свое тепло, за счет которого совершается прогрев дома. Затем вода возвращается в грунт, ниже по течению.
- В скважину глубиной примерно 75 — 100 метров опускается резервуар с антифризом, температура которого может повышаться от окружающего грунта. Тепловой насос разгоняет антифриз и пропускает его через теплообменник. За счет этого совершается отдача тепла.
- В данном случае бурение скважины не предусматривается, однако дом должен находиться рядом с крупным водоемом. Специальная магистраль в виде зондов прокладывается по дну водоема. Таким образом происходит перекачивание воды и извлечение из нее тепла. Важный нюанс — достаточная глубина водоема, которая даже зимой под толщей льда позволит сохранять до 150 сантиметров свободной воды.
Использование геотермального отопления, как и любой системы теплоснабжения, позволит не только обогреть дом, но и обеспечить горячей водой, обогреть автостоянку или теплицу, нагреть воду в бассейне
Преимущества использования теплового насоса
- Экономичность. Благодаря высокому КПД системы достигается низкое энергопотребление. Из 1 кВт затраченной электроэнергии получается от 3 до 7 кВт тепловой энергии. Это больше, чем при работе любых котлов, использующих топливо.
- Автономность. Работа насоса не нуждается в подаче органического топлива, поэтому нет необходимости прокладывать тепловые коммуникации.
- Универсальность. В одном устройстве сочетаются одновременно системы нагрева воды, отопления и охлаждения.
- Безопасность. В отличие от котлов, которые могут воспламениться или взорваться, тепловой насос является абсолютно безопасным. Он не содержит деталей, температура которых может привести к пожару. Не выделяет угарный ядовитый газ. Остановка работы не приведет к поломке или замораживанию жидкости.
- Надежность. Работой насоса управляет автоматика. Обслуживание не требует специального обучения.
- Долговечность. Прибор может прослужить от 20 до 50 лет. Это на порядок больше, чем у стандартных систем отопления.
- Комфорт. Функционирование насоса не сопровождается колебанием температуры и влажности. Работает практически бесшумно.
- Минимум площади требуется под скважину. Так как зонд находится под землей, повредить его невозможно.
- Экологичность. Окружающая среда не загрязняется вредными выбросами.
- Отсутствие бумажной волокиты. При монтаже не нужны согласования, как, например, при установке газового отопления.
Принцип работы теплового насоса
Работу теплового насоса можно сравнить с работой обычного холодильника. Только вместо холода аппарат вырабатывает тепло. Веществом, передающим энергию, является фреон — газ или жидкость с низкой температурой кипения. При испарении он поглощает тепло, а при конденсации — отдает его.Тепловой насос — главный элемент системы. Его размеры не превышают габаритов средней стиральной машины, что облегчает установку прибора. Сам насос включается в два контура: внутренний и внешний.
Внутренний контур состоит из системы теплоснабжения дома (трубы и радиаторы).Внешний контур находится в воде или под землей. Он включает в себя коллектор-теплообменник и трубы, связывающие коллектор с насосом.
Тепловые насосы комплектуются различными дополнительными устройствами. Это могут быть:
- коммуникационное устройство для управления системой через персональный компьютер или мобильный телефон;
- блок охлаждения для локальной или центральной системы охлаждения;
- дополнительный насосный блок может потребоваться для отопления полов;
- циркуляционный насос необходим для циркуляции горячей воды;
Процесс работы насоса состоит из нескольких этапов:
- Незамерзающая смесь подается в коллектор. Происходит поглощение тепловой энергии и транспортировка ее к насосу.
- В испарителе энергия передается фреону, где он нагревается до 8 °C, закипает и превращению в пар.
- При увеличении давления в компрессоре повышается температура. Она может достигать 70 °C.
- Внутридомовая система отопления получает тепловую энергию через конденсатор. Фреон мгновенно охлаждается и переходит в жидкое состояние, отдавая при этом оставшееся тепло. Затем он идет обратно в коллектор. Так завершается цикл.
- Далее работа повторяется по тому же принципу.
Наиболее эффективно тепловой насос функционирует при наличии в доме теплых полов. Тепло распределяется по всей площади пола равномерно. При этом отсутствуют зоны перегрева. Теплоноситель в системе редко нагревается больше 35 °C, а отопление путем нагрева полов считается наиболее комфортным при 33 °C. Это меньше на 2 °C чем при отоплении радиаторами. Отсюда возникает экономия до 18% в год от всего отопительного бюджета. Кроме того, считается, что отопление на уровне пола наиболее комфортно для проживания человека.
Система отопления может быть моновалентной и бивалентной. У моновалентных систем один источник отопления. Он полностью отвечает круглогодичной потребности в тепле. У бивалентных, соответственно, — два источника.
Отопление дома в зимний период
На территории с более суровыми климатическими условиями актуально использование бивалентной системы отопления. За счет второго источника тепла расширяется диапазон температур. Работы одного теплового насоса достаточно только до уровня температуры -20 °С. При большем ее понижении подключаются электрообогреватель, камин, жидкотопливный или газовый котел. При этом мощность теплового насоса ограничивается от максимальной зимней потребности до 70 — 80%. Недостающие 20 — 30% дает дополнительный источник тепла. Это снижает общую эффективность работы системы. Однако снижение является незначительным.
При полном переходе на отопление здания геотермальной системой (в случае, когда не планируется устанавливать дополнительно котел или электроприбор) тепловой насос применяется совместно с внутренним модулем, содержащим небольшой встроенный электронагреватель. Он поддержит прибор, когда температура окружающей среды будет ниже -20 °С.
В каких случаях использование теплового насоса является обоснованным?
Вопрос отопления загородного дома предполагает рассмотрение нескольких вариантов:
- Газ. При отсутствии рядом с домом газопровода это становится невозможным. В ряде регионов купить газ можно только в баллонах.
- Уголь или дрова. С ними отопление превращается в трудоемкий и малоэффективный процесс.
- Жидкотопливный котел требует больших расходов на топливо и специального помещения. Особое хранение необходимо и самому топливу, что неудобно в небольшом доме.
- Отопление электричеством обходится очень дорого.
Окупаемость теплового насоса сложно выразить в усредненном числовом значении. Все зависит от его начальной стоимости. Суть установки такого отопления сводится к перспективе. Хотя количество потребляемой электроэнергии — в 3−5 раз меньше, чем у других систем отопления, все же необходимо подсчитать в денежном эквиваленте все энергозатраты за год и сравнить их со стоимостью системы, ее монтажа и эксплуатации.
Достигнуть максимальной эффективности применения теплового насоса можно при соблюдении двух важных условий:
- Отапливаемое здание должно быть утепленным, а показатель теплопотерь не должен превышать 100 Вт/м2. Существует прямая связь между тем, как утеплен дом и тем, насколько выгодно будет установка теплонасоса.
- Подключение теплового насоса к низкотемпературным источникам обогрева (конвекторам, теплым полам), температурный режим которых колеблется между 30 — 40 °C.
Итак, тепловой насос станет неплохой альтернативой традиционным способам отопления. Прибор гарантирует экономичность и полную безопасность. Владельцу, после установки геотермальной системы отопления, не придется зависеть от различных внешних факторов, как, например, перебои с газоснабжением или вызовом сервисной службы. Энергия, взятая из окружающей среды, не требует оплаты и не исчерпывается.
В соответствии с прогнозами Мирового комитета по энергетике в 2020 г. геотермальные насосы составят три четверти всего отопительного оборудования.
Практика применения тепловых насосов: видео
особенности устройства и принцип работы, виды и схема подключения оборудования
Первые теплонасосы создали более полувека назад, сейчас их изготовление переросло в отдельную отрасль. Во всем мире работают сотни производителей тепловых насосов, предлагающих огромное количество разных моделей с большим набором различных функций. Сегодня теплонасосы — основной способ отопления в европейских странах. Это обусловлено множеством преимуществ этого оборудования.
Принцип действия
Принцип действия теплонасосов простой. В основе работы находится способность хладагента поглощать или передавать тепло с учетом изменения своего агрегатного состояния. По сути, термонасосы практически не отличаются от холодильных установок.
Схематично теплонасос можно представить в виде системы, которая имеет три контура:
- В первом контуре расположен тепловой носитель, который переносит энергию от источника низкопотенциального тепла.
- В следующем циркулирует хладагент. Он может испаряться, забирая тепловую энергию из первого контура, или заново конденсироваться, передавая тепло третьему контуру.
- В последнем контуре циркулирует теплоприемник (обычно вода), который переносит тепло по батареям для отапливания дома.
То есть жидкий фреон поступает в испаритель, в котором преобразуется в газообразное состояние. Требуемая энергия для прохождения этого процесса забирается у теплового носителя, который циркулирует по первому контуру. Затем нагретый на 2−3 градуса газообразный фреон поступает в компрессор, основное предназначение которого — сжатие газа.
Давление газа увеличивается, причем он сильно нагревается (на входе температура может составлять 7−12C, а на выходе более 50C). Далее горячий газ переходит в конденсатор и передает тепло отопительной системе, переходя при этом в жидкое состояние. После лишнее давление сбрасывается спусковым клапаном, и цикл повторяется.
Основные виды
Тепловая энергия, которая расходуется на отопление загородного дома и для подачи горячего водоснабжения, это результат преобразования энергии из внешней среды при помощи термонасоса. Помпа концентрирует эту низкотемпературную энергию и переносит ее по отопительной системе.
Чаще всего бытовые насосы используют тепло солнечного освещения или тепло поверхности Земли, которое скапливается в верхних частях земной коры или подземных водах на протяжении года. То есть по конструкции все теплонасосы можно разделить на воздушные, водяные и грунтовые.
Грунтовые помпы
Этот вид насосного оборудования получает тепло от грунта. Температура земли на глубине более 3 м почти не подвергается сезонным перепадам. По замкнутому контуру труб, устроенным в грунте, циркулирует этанол или антифриз. Трубопровод теплообменника можно прокладывать в грунте горизонтальным или вертикальным способом.
Трубы при горизонтальной системе нужно установить в землю ниже промерзания грунта (чаще всего это 1,6−2,1 м). Теплообменник этого типа занимает значительную площадь. Так, для отопления дома в 100 м² требуется примерно 10−20 м² земли.
На участке, который занят коллектором, можно высаживать только те растения, у которых корневая система не уходит в грунт очень глубоко, также запрещается сооружать какие-то капитальные постройки.
При устройстве вертикального теплообменника трубы устанавливают перпендикулярно уровню земли и погружают в грунт примерно на 150−220 м. Число монтируемых зондов будет зависеть от мощности обогревательной системы. То есть для отопления дома 100 м² потребуется 2 зонда длиной примерно 90 м, находящихся друг от друга с интервалом 4−6 м.
Для установки этого теплообменника не потребуется много места, можно сделать скважины на любом участке, где это возможно. Основной недостаток вертикальных систем — дорогая стоимость бурения глубоких скважин.
Водяное оборудование
Этот вид помп «забирает» энергию у подземных вод. Такой тепловий насос характеризуется высокой эффективностью и хорошей стабильностью. Это обусловлено отличной теплоотдачей внутри системы и постоянным термальным режимом подземных вод.
Естественно, требуется чтобы на территории участка находился в большом количестве этот водоносный слой (желательно не глубже 35−45 м). Также условием установки водяного оборудования является минимальное содержание в подземных водах железа и солевых примесей.
Наличие условий является основной причиной того, что такие теплонасосы, невзирая на их привлекательность, монтируются редко (примерно 6−7% от общего количества).
Воздушные агрегаты
В плане простоты установки воздушный тепловой насос для отопления дома имеет значительное преимущество, в отличие от своих аналогов. Для использования воздуха в качестве источника теплой энергии не потребуется бурить скважины либо выполнять иные масштабные земельные работы. То есть воздушная помпа в установке обходится намного дешевле, чем другие два вида насосов.
Невзирая на это огромное преимущество у воздушного оборудования существует один серьезный недостаток. Эта помпа может эффективно работать только при температуре воздуха выше -17C. Снижение температуры ниже установленной границы, что зимой часто случается во многих регионах, приводит к значительному уменьшению коэффициента эффективности этого оборудования.
Коэффициент трансформации
Коэффициент трансформации (эффективности) — это соотношение выработанной помпой тепла с учетом затраченного электричества (то есть КПД термонасоса). У разных видов насосов этот коэффициент отличается:
- В случае водяного оборудования коэффициент равняется 5 независимо от сезона. Это обозначает, что во время потребления 1 кВт/ч электричества система выдает 5 кВт/ч тепловой энергии.
- У грунтовых помп коэффициент меньше — 4,1−4,5.
- Самый низкий коэффициент у воздушных насосов, причем эффективность значительно зависит от температуры воздуха. Так при 0C размер коэффициента равняется примерно 3,6, а при -17C он не более 1,6.
При выборе теплового насоса для отопления это один из важных параметров, на который непременно нужно обратить внимание.
Использование с учетом климата
Воздушный тепловой насос для дома подходит для использования только в ограниченном количестве регионов, то есть в тех местах, в которых температура воздуха в зимнее время практически не опускается ниже нуля градусов. Естественно, для жителей Сибири, Крайнего Севера, Дальнего Востока это оборудование не подходит.
Для установки водяных термонасосов существует множество ограничений. Но основная особенность заключается в том, что больше половины территории государства расположена в зоне вечной мерзлоты. Поэтому даже если и есть на участке этот водоносный слой, находящийся не очень глубоко, то все равно эти подземные воды полностью замерзли и имеют форму льда, соответственно, не подходят для отопительных систем.
Так, многим владельцам коттеджей нужно рассчитывать только на грунтовый теплонасос. Причем в условиях многих климатических регионов лучше всего подходит система с вертикальным коллектором, которая позволяет пробурить скважину до глубины, где температура относительно стабильна.
Применение для охладительных систем
Большим преимуществом термонасосов является то, что это оборудование может не только отапливать здание, но и охлаждать помещение.
Конструктивное решение возможности охлаждения зачастую интегрировано в теплонасос изначально, на этапе производства, и почти у всех изготовителей существую модели насосов, которые умеют кондиционировать дом (функция Natural Cooling).
Если насосное оборудование не имеет эту возможность, то его можно переделать. Для этого дополнительно потребуется смонтировать гидравлическую развязку, которая устанавливается вне насоса. Этот вариант не потребуют значительных капиталовложений.
Подавать генерируемый холод в здание можно различными способами. Такую функцию можно возложить на охлаждающие панели, устанавливаемые на поверхности стен, «холодный» теплый пол, отопительные радиаторы или фанкойл — агрегат, где в корпусе находится обдуваемый с помощью вентилятора теплообменник.
Для горячего водоснабжения
Все термонасосы могут не только отапливать помещение, но и круглый год подавать горячую воду. Но нужно учесть, что это оборудование является низкотемпературным, соответственно, температура воды в водонагревателе будет не более 40−50C. То есть объем бойлера обязан быть больше, чем во время эксплуатации обычной системы отопления. Поэтому может потребоваться жесткая экономия горячей воды в зимнее время.
Этот факт необходимо учесть при проектировании месторасположения и соответствующей площади для котельной. Также во время выбора бойлера нужно не забывать, что для этого потребуется специальное оборудование, которое рассчитано на работу с тепловыми насосными установками. Основное отличие этого бойлера от традиционного — большая площадь теплообменника, требующаяся для эффективной передачи тепловой энергии от термонасоса.
Со встроенным ТЭНом
Часто во время производства изготовители дополнительно встраивают в теплонасосы электрические нагреватели. Это позволяет при необходимости переходить на альтернативный для термонасоса источник энергии — электричество.
Это объясняется следующими факторами. Выбор теплонасоса для отопительной системы производится с учетом разных параметров, в частности и особенностями климата конкретного региона. Причем является нецелесообразным монтировать оборудование с избыточной мощностью. Просто экстремальные заморозки случаются редко.
Как показала практика, самым экономным способом «добрать» в эти холодные дни требуемую мощность — это электроэнергия. Это дешевле, чем изначально монтировать насос повышенной мощности. Наличие электрического нагревателя позволяет исключить необходимость устанавливать более мощный насос, чем это необходимо.
Для хозяев грунтовых или водяных теплонасосов установленный ТЭН не является необходимостью. Совершенно по-другому происходит ситуация с воздушным оборудованием. При температуре -17C этот насос будет малопроизводительным. Установка дополнительного теплового генератора в этом случае целесообразна.
Особенности выбора
Теплонасос — это устройство технически сложное и довольно дорогостоящее, потому подходить к приобретению этого оборудования нужно очень тщательно. Существует ряд рекомендаций, которые смогут в этом помочь:
- Не стоит приступать к выбору теплонасоса без предварительного выполнения расчетов и разработки проектной документации. Не соблюдение этого правила может являться причиной серьезных ошибок, и исправить их можно будет только с помощью значительных дополнительных материальных затрат.
- Доверить разработку проекта, установку и гарантийное обслуживание термонасоса и отопительной системы следует лишь профессиональной компании. Для начала нужно проверить наличие всех требуемых документов строительной организации, портфолио уже установленных систем, сертификаты на реализуемое оборудования. Лучше всего чтобы полностью комплекс требуемых работ производила одна фирма, которая в этом случае несет всю ответственность за установленную отопительную систему.
- Желательно выбирать теплонасос от европейского производителя. Отличие по стоимости при выборе российских или китайских устройств незначительное. Во время разработки сметы стоимости работ по установке, запуску и наладке всей отопительной системы разница в цене почти незаметна. Но европейское оборудование надежней в эксплуатации, так как завышенная стоимость насосного оборудования — это только результат использования качественных материалов и современных технологий.
Загрузка…Тенденции к увеличению цен на природный газ, а также дорогостоящее подключение к тепловым и электрическим сетям, безусловно, являются основными факторами, дающими толчок популяризации теплонасосов. Сегодня многие застройщики и хозяева частных владений прибегают к установке альтернативных отопительных систем. И их количество ежегодно увеличивается.
Обсуждение:Тепловой насос — Википедия
Эта статья находится на ресурсе наших партнеров. и Взята к распостранению с их разрешения
http://ekodom.e-gloryon.com/nasos2
Все ясно — вопрос снят. 🙂 —Александрит 22:15, 8 марта 2007 (UTC)
- Добавьте ссылки на статьи на других языках (интервики) и проставьте категории, а то вскоре робот повесит на статью длинный зелёный шаблон — о том, что они нужны. SergeyPosokhov 23:30, 8 марта 2007 (UTC)
- Господа! Что вы сделали со статьёй? Она стала неинтересной. Хорошо, что я сохранил кое-что из старого содержания. Википедия из современной энциклопедии становится сборищем шаблонных банальностей и фактов столетней новизны.94.179.166.194 12:13, 17 декабря 2010 (UTC)
Современные парогазотурбинные установки на электростанциях имеют КПД,незначительно меньший КПД газовых котлов ?????
Какие именно котлы имеются ввиду???? кпд современных ПГУ на уровне 50% , энергетических колов около 93%, водогрейных 88%!!! Eragon87 11:32, 29 октября 2009 (UTC)
Считаю что схема изображена неверно. Тепло от низкопотенциального источника подводится к системе, а не отбирается от неё, как это показано на схеме. Исправьте пожалуйста. 89.232.124.45 17:27, 14 декабря 2007 (UTC) Степанов Павел Студент, Казань ICQ 434870579
Сто лет в обед как это используется в кондиционерах. Такое впечатление, что статья написана в 50-е. —Rambalac 03:27, 24 сентября 2008 (UTC)
Замечание совершенно «не в тему». Кондиционеры имеют другой принцип работы — охлаждаемое помещение является «морозильной камерой» холодильной установки, а тепло от конденсатора отводится за пределы здания, в атмосферу. Тепловой насос же отбирает тепло у внешней среды и использует его для обогрева помещения. Т.о., кондиционер является холодильной установкой с открытой в помещение морозильно/холодильной камерой и выведенным наружу радиатором конденсатора, а тепловой насос — «обращённая» холодильная установка, где радиатор конденсатора, упрощая, является радиатором отопления помещения.Baffet 13:59, 28 ноября 2010 (UTC)
А по мне очень даже и неплохо, а кому интересно может посмотреть историю и реально работающие установки здесь: http://www.veles-gh.ru/89.21.141.77 11:51, 14 января 2009 (UTC)89.21.141.77 11:47, 14 января 2009 (UTC)
- Вообще-то 80% домов в Швеции и около 20% в Финляндии уже оснащены тепловыми насосами. Норвегия тоже в лидерах. Очень бурно развивается рынок: http://www.sulpu.fi/index.php?option=com_zoom&Itemid=127&catid=5. Перевёл немного и ссылку оставил, по картинке можно понять суть. Информацию в статье стоит дополнить переводом, много теории, а ведь всё это уже реально работает, никакой хладагент под землю никто не закачивает! Канада по климату похожа, английские источники стоит поискать там. Kovako-1 22:30, 19 августа 2010 (UTC)
- Прошу Вас избегать сентенций, подобных «никакой хладогент под землю никто не закачивает», т.к. в подобном случае Вы отрицаете одну из существующих и реально работающих схем теплового насоса «земля-вода». Рекомендую Вам прочесть статьи с пояснениями на сайтах ведущих производителей теплоэнергооборудования.Baffet 14:03, 28 ноября 2010 (UTC)
Фраза «фактически — это холодильник, включенный наоборот» категорически неверна. Тепловой насос всегда имеет «два конца» — на одном он отбирает энергию, на другом отдает. В частности, холодильник — это и есть обычный тепловой насос. Рекомендую также посмотреть английскую версию статьи — Нуда холодильник выкачивет тепло из продуктов, а тепловой насос из источник низкопотенциального тепла — сравнение не хорошое. en:Heat pump — там нет таких ошибок. 91.78.15.225 07:39, 24 февраля 2009 (UTC)
- Уважаемый аноним! Что то тут ваши антитезы не сходятся. 1.Тепловой насос всегда имеет «два конца». А что холодильник имеет один? Или три? 2. В частности, холодильник — это и есть обычный тепловой насос.Это ваше логическое утверждение. Исходя из него «…В частности, тепловой насос — это и есть обычный холодильник». И где же тогда Вы увидели «категорическую неверность» и «такие ошибки». Фраза очень точно обозначает суть процесса для обывателя. Рекомендую почитать учебник физики на русском языке, хотя можете и на английском если Вам удобнее. Властарь 09:56, 24 февраля 2009 (UTC)
- Согласен с тем, что фраза «это холодильник, включенный наоборот» вводит в заблуждение. Имеет смысл переработать статью и исключить эту фразу. Agri 05:16, 24 апреля 2009 (UTC)
- Чем лично вас эта фраза ввела в заблуждение? И холодильник и тепловой насос используют один и тот же принцип. Поставте морозильную камеру в помещение а теплообменник на улицу — получите холодильник. Делаем наоборот. Морозильную камеру выносим на улицу, а теплообменник устанавливаем в помещении — вот вам тепловой насос. В фразе всего три слова. Какое из слов именно вводит в заблуждение? Холодильник? Включенный? Или наоборот? Властарь 21:40, 26 апреля 2009 (UTC)
- Эта фраза всего-лишь начало статьи. Если статью дальше не читать то возможно кто-то чего-то и не поймет. Я ж не оставил эту фразу одну. Эту статью копируют уже все кому не лень, в том числе и фирмы которые непосредственно занимаются продажей и установкой этих самых тепловых насосов. Их в этой статье ничего не смущает. В итоге я бегаю по интернету нахожу свою же статью почти целиком или слегка переработанную и делаю на них ссылки как на АИ. Властарь 22:19, 26 апреля 2009 (UTC)
- А вот так нелья делать 🙂 И то, что «их… ничего не смущает», это их проблемы — может, они безоговорочно верят Википедии (а зря!) infovarius 06:29, 28 апреля 2009 (UTC)
- Удалил слова со значением «наоборот». Тепловой насос — это, по сути, такая же холодильная машина, как холодильник: переносит тепло из зоны низких температур в зону высоких путём совершения работы. Разница в понимании задач этой машины: у холодильника цель находится на холодном конце, у ТН — на тёплом. И соответственно отлчается то, на каком конце стараются сконцентрировать «усилия», а на каком «распылить» эффект для снижения преодолеваемой разницы температур. Ignatus 19:49, 3 июня 2011 (UTC)
- А вот так нелья делать 🙂 И то, что «их… ничего не смущает», это их проблемы — может, они безоговорочно верят Википедии (а зря!) infovarius 06:29, 28 апреля 2009 (UTC)
- То, что мы именуем бытовой «холодильник» — действительно лишь вариант теплового насоса — в отличие от холодильника физического или технологического устройства для охлаждения (паров) — в т.ч. и теплообменника 🙂
- То, что слепо копируют ру-вики — естественно, и улучшать статьи нужно… :-)) Alexandrov 07:49, 28 апреля 2009 (UTC)
Мне лично кажеться неверной формулировка «Условный КПД тепловых насосов», все таки правльней назвать КПЭ (коэффицент преобразования энергии), COP (coefficient of perfomance). А так обывателю может показаться, что ТНУ — это перпетуум мобиле с КПД 200-600%%, даже после последующего разъяснения. (SlayeR)
- СОР(coefficient of perfomance)- так он и называется, на шведском и финском не стали изобретать велосипед, используют именно эту абревиатуру. Kovako-1 22:36, 19 августа 2010 (UTC)
…что должна значить фраза «Ориентировочно на 1 погонный метр скважины приходится в год 50-60 Вт тепловой энергии»? —KVK2005 10:29, 26 апреля 2011 (UTC)
Верное замечание. Ватты в год быть не могут в данном случае, отношение мощности ко времени — это скорость изменения мощности и подобная физическая величина к данному вопросу отношения не имеет. Возможно имелась в виду среднегодовая мощность составляет 50…60 Вт или энергия получаемая за год составляет 50…60 Вт*ч. Скорее всего первый вариант, так как 50…60 Вт*ч за год равняется примерно 0,006 Вт, что очень мало. Также вопросом является какой диаметр скважины, так как чем больше диаметр, тем больше площадь, меньше тепловое сопротивление и соответственно больше можно отбирать тепла. Судя по ссылке эта информация частично рекламная и относится к конкретному исполнению скважин предлагаемых какой то компанией.178.165.55.68 20:10, 10 января 2012 (UTC)S_En
Может немного подправить статью?[править код]
По сути по всем частям статьи разбросана так называемая эффективность или COP или тепловой коэффициент или коэф. трансформации. Но по сути данный параметр не раскрыт. Может создать раздел с формулами и примерами, а из других разделов убрать постоянные отсылки к эффективности тепловых насосов? Можно просчитать холодильный цикл для разных температурных режимов? А то все вокруг да около. —Ruslan_G 06:18, 16 января 2014 (UTC)
По сути написано верно, но никто не подумал почему единицы измерения разные? Почему джоули на ваты делят? не перебор для безразмерной величины?
В английской версии «is the work consumed by the heat pump.» вместо ватов т.е. те же джоули. —109.238.81.229 08:19, 22 сентября 2014 (UTC)
Условный КПД тепловых насосов[править код]
зря убрали я считаю.
там объяснено почему КПД у некоторых получается 300%. откуда берутся эти сотни и почему это несовсем правильно, хотя и имеет под собой некоторые основания и вообще зачем ввели COP и степеь термодинамического совершенства, а то эта величина неожиданно появляется в таблице и толком не объяснено что эта за величина и зачем её ваще ввели—109.238.81.229 05:26, 27 сентября 2014 (UTC)
Федор ты хоть обясни что тебе не нравится- что за манера от мена и все.
- Тут энциклопедия всё-таки, а не забор для надписей «Я был тут». Напиши на основе нормальных источников (ВП:АИ) и по-русски, без грубых ошибок. —Fedor Babkin talk 06:04, 27 сентября 2014 (UTC)
- посторался кратко изложить… можно добавить в источники —109.238.81.229 06:10, 27 сентября 2014 (UTC)
- ютуб не годится. Лучше университетские учебники (не школьные) или монографии. —Fedor Babkin talk 06:19, 27 сентября 2014 (UTC)
- Ну он размещён на туье так это пособие для ВУЗов… ну короче это уже в форум превращается. Я к тому что я это все не с потолка взял, интересно а как с этим у пред идущих ораторов? —109.238.81.229 06:22, 27 сентября 2014 (UTC)
- Вставлю свои 5 копеек: конечно, внятно объяснить, что такое COP и каким образом получается, что на выходе ТН мы получаем больше энергии, чем на входе, в статье нужно. Но корректность формулировок, грамотность и стиль того текста, что добавляет ув. аноним, увы, на таком низком уровне, что скорее вредят энциклопедии, чем улучшают её. Переписать бы это нормальным языком… DmitTrix (обс) 07:30, 27 сентября 2014 (UTC)
- По-русски писать без ошибок можете? Что такое АИ понимаете? —Fedor Babkin talk 11:45, 27 сентября 2014 (UTC)
- Всё-таки, убрал абзац, так как он написан полуграмотно и сумбурно. Нужно переписать с нуля! Не соответствует уровню Википедии. Уважаемый аноним «109.238.81.229», вам большая просьба и совет: дописывайте и правьте статьи не лихорадочно, а обдуманно и ГРАМОТНО (!). Вы позволяете себе по отношению к поправляющим вас участникам довольно резко высказываться. Насколько это видно из вашей истории, это присутствует почти при всех ваших «написаниях». Вас уже предупредили о возможности «бана». Illustrator 02:30, 12 января 2015 (UTC)
- По определению КПД=(полезная энергия или работа)/(затраченная энергия или работа). Для тепловых насосов (полезная)=Q1 — количество теплоты, отданное нагревателю; (затраченная)=А — электрическая энергия, взятая из сети для работы насоса. Из закона сохранения энергии также следует A=Q1-Q2, где Q2 — количество теплоты, взятое из холодильника. Таким образом, КПД=Q1/A=Q1/(Q1-Q2). Для идеального теплового насоса, работающего по циклу Карно, КПД=T1/(T1-T2), где T1 и T2 — температуры нагревателя и холодильника. 95.32.3.151 07:28, 29 января 2015 (UTC)
- Дичь полная написана. Например, «Пусть тепловой насос потребляет из электрической сети 1 КВт и отдает потребителю 4 Квт, и забирает из низкопотенциального источника 5 Квт». Получается, взял 6, отдал 4, куда ещё 2 дел? Надо переписать раздел.93.125.107.51 10:52, 20 октября 2018 (UTC)
Википедия морочит голову[править код]
Тепловой насос затрачивает энергии больше, чем переносит от холодного тела к теплому. Если бы существовал способ перенести N джоулей тепла от холодного тела к теплому, затратив при этом энергии меньше чем N джоулей, то это был бы вечный двигатель 2-го рода. Потому что потом можно было бы эти же самые N джоулей тепла пустить от теплого тела к холодному через обычный тепловой двигатель (паровую машину) и выполнить полезную работу. Right-kov 07:42, 21 апреля 2016 (UTC)
- Нет. Предложенная вами тепловой двигатель будет иметь КПД достаточно низкий, чтобы общий КПД системы был меньше 100%. По-моему, это верно даже в случае идеальных теплового насоса и теплового двигателя, и уж точно верно для реальных. DmitTrix 09:39, 21 апреля 2016 (UTC)